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Abstract
The rise of autonomous GUI agents has triggered adversarial coun-

termeasures from digital platforms, yet existing research prioritizes

utility and robustness over the critical dimension of anti-detection.

We argue that for agents to survive in human-centric ecosystems,

they must evolve Humanization capabilities. We introduce the “Tur-

ing Test on Screen,” formally modeling the interaction as a MinMax

optimization problem between a detector and an agent aiming to

minimize behavioral divergence.We then collect a new high-fidelity

dataset of mobile touch dynamics, and conduct our analysis that

vanilla LMM-based agents are easily detectable due to unnatural

kinematics. Consequently, we establish the Agent Humanization

Benchmark (AHB) and detection metrics to quantify the trade-off

between imitability and utility. Finally, we proposemethods ranging

from heuristic noise to data-driven behavioral matching, demon-

strating that agents can achieve high imitability theoretically and

empirically without sacrificing performance. This work shifts the

paradigm from whether an agent can perform a task to how it per-

forms it within a human-centric ecosystem, laying the groundwork

for seamless coexistence in adversarial digital environments.

Keywords
GUI Agents, Large Multimodal Models, Human-Mobile Interaction,

Adversarial Detection, Agent Humanization

1 Introduction
The advent of Large Multimodal Models (LMMs) [30, 36, 42] has

fundamentally reshaped the landscape of human-mobile interaction.

By empowering systems to perceive visual interfaces and execute

complex interactions, we are witnessing a paradigm shift from static

scripts to autonomous Graphical User Interface (GUI) Agents [23,

47, 60]. These agents possess the capability to navigate mobile

applications, process visual information, and execute tasks on behalf

of users, promising a future where digital labor is significantly

offloaded to AI [12, 57].

However, the widespread deployment of GUI Agents precipi-

tates a conflict of interest between users and service providers,

potentially triggering an adversarial dynamic between autonomous

agents and digital platforms [2, 29]. As is shown in Figure 1, modern

digital ecosystems rely heavily on the attention economy, where
user engagement and advertisement impressions are the primary

revenue drivers. In contrast, GUI Agents are usually optimized

for efficiency and targeted for goals, bypassing promotional con-

tent and streamlining interaction paths. This behavior poses an

existential threat to the business models of incumbent platforms.

This adversarial interest compels platforms to deploy Platform

Defenses. These defenses may range from service blocking to more

sophisticated adversarial interventions, such as injecting targeted

noise or deploy advertisement traps that conversely use agents to

achieve revenue goals. As a result, these indiscriminate defenses

introduce severe User Experience Risks, such as login failures or

environments full of noise for real users. A representative example

of this conflict is the recentDoubao Mobile Assistant incident, where
the agent’s attempt to automate cross-application tasks triggered

severe security protocols from superplatforms, such as Wechat,

resulting in widespread account restrictions and service blockings.

See Appendix A for details.

Despite these defensive realities, the academic community re-

mains largely fixated on an “Attack vs. Anti-Attack” paradigm.

Existing research predominantly focuses on two axes: (1) enhanc-

ing task utility, and (2) improving agent robustness against active

platform perturbations (i.e., Anti-Attack). However, this perspec-

tive overlooks the prerequisite “Detect vs. Anti-Detect” paradigm.

Detection acts as the gatekeeper: given the potential risks to user ex-

perience, platforms will inevitably prioritize distinguishing agents

from humans to filter traffic before deploying any indiscriminate at-

tacks. Consequently, to achieve a harmonious coexistence with the

ecosystem, agents must evolve beyond mere robustness to possess

anti-detection capabilities, specifically Humanization.

To bridge this gap, we formally define the problem of Agent
Humanization and systematically investigate the adversarial dy-

namics between detection and anti-detection in the era of GUI

https://orcid.org/1234-5678-9012
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Figure 1: The adversarial landscape between GUI Agents and Mobile Platforms. The figure illustrates three key stages: (1)
Main Conflicts: Adversarial interests lead platforms to deploy defenses such as login blocks and ad traps. (2) Turing Test on
Screen: The core detection mechanism relies on distinguishing natural human trajectories from agent trajectories. (3) Agent
Humanization: We propose an adversarial humanization task to transform raw agents into humanized agents by increasing
their imitability to bypass detection while maintaining task accuracy.

agents. We extend the Turing Test [43] to the field of GUI Agents

and introduce the concept of “Turing Test on Screen”. Unlike
the classical Turing Test, which evaluates human-like intelligence

through textual dialogue, our paradigm evaluates human-like be-

havior through touch and sensor events on mobile interfaces. This

draws inspiration from behavioral biometrics, where touch dynam-

ics are traditionally used for user authentication [3, 17, 59]. In this

context, the interaction is considered as an adversarial game, which

is formulated as aMinMax optimization problem [19, 46] where

the Detector seeks to maximize the distinction between human

and agent behaviors, while the GUI Agent seeks to minimize this

distinction without decreasing task utility.
Guided by this formulation, we conduct a comprehensive study

to assess the current state of agent detectability. We collect a large-

scale dataset comprising detailed motion events such as touch co-

ordinates, velocity and sensor events from both human users and

a wide range of state-of-the-art GUI Agents. Our empirical anal-

ysis reveals that raw agents are highly susceptible to detection

due to unnatural kinematic features. Based on these findings, we

construct the Agent Humanization Benchmark (AHB) to evaluate

the trade-off between human-like imitability and task success

utility. Furthermore, we propose multiple humanization strategies

designed to evade detection, conducting both theoretical proofs
in Section 4.3 and Appendix C and empirical experiments in Sec-

tion 5 to prove their effectiveness, providing a roadmap for future

agent development.

The contributions of this paper are summarized as follows:

• We are the first to extend the Turing Test to the field of GUI

Agents and introduce the concept of “Turing Test on Screen”. We

formally define the adversarial paradigm between the Detector

and the GUI Agent, establishing a theoretical framework for

studying agent detectability in GUI environments.

• We construct a rich dataset containing granular MotionEvent
and SensorEvent sequences, enabling high-fidelity analysis of

behavioral differences between humans and GUI agents.

• We are the first to propose specific detectionmetrics and establish

the Agent Humanization Benchmark (AHB) to quantitatively

assess agent imitability and utility.

• We design and evaluate several humanity modules, ranging from

heuristic noise injection to data-driven history matching, which

improve agent imitability both theoretically and empirically. Our

code and data are publicly available at
1
and

2
.

Ultimately, this work underscores a pivotal transition in the evo-

lution of AI agents: moving beyond the question ofwhether an agent
can perform a task, to how it performs it within a human-centric

ecosystem. As the “Turing Test on Screen” becomes inevitable for

digital access, the ability to exhibit human-like behavioral nuances

is no longer merely an aesthetic feature but a functional neces-

sity for survival. By formalizing the interplay between detection

and humanization, we hope to lay the groundwork for a future

where autonomous agents can seamlessly coexist with existing

digital infrastructures, safeguarding user agency in an increasingly

adversarial online world.

1
https://github.com/Gebro13/Passing-the-Turing-Test-on-Screen-Agent-

Humanization-Benchmark

2
https://huggingface.co/datasets/lyyang2766/Passing-the-Turing-Test-on-Screen-

Agent-Humanization-Benchmark/tree/main
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2 Formulation of Turing Test on Screen
We formally define the Turing Test on Screen as a Min-Max

adversarial game [46] between two entities: a Detector 𝐷Θ (the

platform) and a GUI Agent 𝐺Φ (the operator). The detector aims

to maximize classification accuracy, while the agent minimizes

detection probability subject to task utility constraints.

2.1 Interaction Modeling
The interaction between the agent and the mobile OS occurs at two

distinct layers: the logical action level and the physical event level.
Agent-OS interaction is decoupled into two hierarchical layers:

Agent Level: At each step 𝑡 , 𝐺Φ generates a high-level UI com-

mand 𝑎𝑡 (e.g., tap, swipe) based on the environmental state 𝑠𝑡 :

𝑎𝑡 =𝐺Φ (𝑠𝑡 ), 𝑠𝑡+1 = T (𝑠𝑡 , 𝑎𝑡 ) (1)

where T denotes the state transition function.

Event Level: On a mobile phone, a single logical action 𝑎𝑡 is not a

simple data point; rather, it acts as a trigger that invokes multiple

underlying hardware sensors, generating a set of fine-grained

events 𝐸𝑡 . We define the event mapping function 𝑓 : 𝑎 → {𝑒}
such that:

𝐸𝑡 = {𝑒𝑡,1, 𝑒𝑡,2, . . . , 𝑒𝑡,𝑘 } = 𝑓 (𝑎𝑡 ) (2)

These events 𝑒 ∈ 𝐸𝑡 are categorized as: (1)Motion Events (𝑀) rep-
resenting touch dynamics (coordinates, pressure); and (2) Sensor
Events (𝑆) representing physical signals (gyroscope, magnetome-

ter).

Thus, 𝑒 ∈ 𝑀 ∪ 𝑆 . The complete behavioral trace observed by the

system up to time 𝑇 is the union of all triggered events: E1:𝑇 =⋃𝑇
𝑡=1 𝐸𝑡 .

2.2 The Adversarial Game
The benchmark evaluates whether the event sequence E is distin-

guishable from human-generated patterns.

Detector’s Objective. 𝐷Θ acts as a discriminator evaluating the

accumulated stream E1:𝑡 . For any action sequence, it outputs a

probability 𝑦𝑡 = 𝐷Θ (E1:𝑡 ) ∈ [0, 1], where 𝑦𝑡 → 1 denotes a Human

classification and 0 denotes an agent. 𝐷Θ maximizes its discrimina-

tion power:

max

Θ
L𝐷 = EE∼H [log𝐷Θ (E)] + EE∼𝐺Φ [log(1 − 𝐷Θ (E))] (3)

where H and 𝐺Φ denote the event distributions of humans and

agents, respectively.

Agent’s Objective. 𝐺Φ must optimize its parameters Φ to balance

Imitability and Utility via a regularized minimization:

min

Φ
L𝐺 = E𝑠∼S

[
𝑇∑︁
𝑡=1

I(𝐷Θ (E1:𝑡 ) < 𝜏) − 𝜆 · 𝑅task (𝐺Φ)
]

(4)

where 𝜏 is the detection threshold, I(·) is the indicator function, and
𝑅task represents the task success rate. The multiplier 𝜆 governs the

trade-off, ensuring humanization does not compromise functional

capability. This framework provides the theoretical foundation for

the Agent Humanization Benchmark (AHB).

(a) Human Swipe (b) Agent Swipe

Figure 2: The difference between human and agent swipe.
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Figure 3: The visualization of action interval and tap duration
differences between human and agents.

3 Data Collection and Preliminary Study
We first collect a large-scale data and make some preliminary stud-

ies. This stage focuses on understanding the behavioral signatures

of standard GUI agents compared to authentic human users.

3.1 Dataset Collection
Our dataset captures interactions across 21 diverse applications

categorized into five clusters (e.g., Social Media, Shopping, Trip

Planning; see Table 3 in Appendix). Data is collected from two

primary sources:

• HumanUsers: Four sub-populations (YoungMan/Woman,Middle-

aged, and Elderly) to capture physiological and age-related be-

havioral variances.

• Autonomous Agents: Interactions generated by state-of-the-

art models including UI-TARS [38], MobileAgent-E (GPT-4o) [49],

MobileAgent-E (Claude-3.5-Sonnet), AgentCPM [64], and Auto-

GLM [31].

Following [16], we derive 24 statistical features to capture

unique biomechanical signatures. These include Kinematics: e.g.
velocity, acceleration, Geometry: e.g. path efficiency, curvature, and

Temporal Dynamics: e.g. duration, latency. To quantify the relevance
of the feature and to prove its effectiveness for the detector, we

calculate the InformationGain (IG) [40] for each attribute relative
to the source identity 𝑈 . See details in Table 6 and Figure 9 in

Appendix B. The strategic decision to focus on touch dynamics

rather than hardware sensor streams is justified in Appendix E.
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3.2 Preliminary Qualitative Study
We conduct a preliminary study and demonstrate the differences

across two aspects, as follows:

3.2.1 Trajectory Linearity. As shown in Figure 2, agent trajectories

are typically rigid, linear vectors lacking the physiological arcs and

motor noise of human gestures.

3.2.2 Action Intervals. Human intervals follow a long-tailed distri-

bution peaking near zero, whereas agents suffer from significant

inference overhead. As shown in Figure 3a, ui-tars clusters at

5–10s, while mobile-agent-e reaches 50–80s. These delays are

sufficient for reliable detection.

3.2.3 Tap Duration. Human taps form a Gaussian distribution

(0.05s–0.10s) due to skin elasticity, while agent inputs manifest as

near-zero spikes, reflecting instantaneous event injection.

In summary, vanilla agents fail the “Turing Test on Screen” due

to robotic linearity and non-human temporal rhythms, making it

trivial for a detector to identify.

4 The Agent Humanization Benchmark
To quantify humanization effectiveness, we introduce the Agent
HumanizationBenchmark (AHB), a framework evaluating agents

across two axes: Imitability and Utility.

4.1 Evaluation Metrics
4.1.1 Imitability. Imitability measures the behavioral resemblance

between agents and humans, quantified inversely by theClassifica-
tion Accuracy (ACC) of various detection algorithms. A detector

ACC approaching 0.5 (random guessing) signifies that the agent has

successfully passed the “Turing Test on Screen” for that detection

modality.

4.1.2 Utility. Since humanization (e.g., noise, delays) may degrade

efficiency, we monitor the Task Success Rate to ensure function-

ality is preserved. An ideal strategy achieves high imitability with

minimal success rate degradation; strategies that bypass detection

but fail at tasks are considered unsuccessful.

4.2 The Hierarchy of Detectors
The AHB categorizes detectors (𝐷) by action type and complexity,

ranging from simple heuristics to robust machine learning models

to assess agents against a defense hierarchy.

4.2.1 Rule-based Detectors. These serve as the first line of defense,
utilizing predefined statistical thresholds to identify anomalies in

individual attributes. Metrics include Swipe Accuracy, Time In-
terval Accuracy, and Tap Duration Accuracy. Together, they
filter out agents that fail to adhere to basic biological constraints.

4.2.2 Learning-based Detectors. To identify subtle, non-linear pat-

terns in trajectories, we employ SVM [8] and XGBoost [5] classifiers.

Trained on the 24-dimensional feature vector in Section 3, these

models capture complex correlations between features. Evading

these detectors requires the agent to mimic the holistic distribu-

tion of human behavior rather than just isolated features. A deeper

discussion on the robustness of these interpretable detectors is

provided in Appendix E.

4.3 Humanization Methodologies
To bridge the gap between mechanical agent behavior and human-

like interaction, we propose two architectural paradigms for human-

ization: (1) Internal Injection, embedding human priors directly

into the LMM (e.g., via fine-tuning); and (2) External Wrapper,
a post-processing module 𝐻 that transforms raw actions 𝑎raw into

humanized sequences 𝑎human before execution.

As a foundational study, we adopt the External Wrapper ap-
proach for its model-agnostic compatibility. We propose four dis-

tinct strategies, starting with heuristic signal processing.

4.3.1 Strategy 1: Heuristic Noise Injection (B-Spline). To counter-
act the perfect linearity of raw agent swipes, we utilize B-spline

smoothing [10]. Instead of a linear path, we generate a curve 𝑆 (𝑡)
based on control points𝐶 = {𝑐0, . . . , 𝑐𝑛} scattered normally around

the direct chord:

𝑆 (𝑡) =
𝑛∑︁
𝑖=0

𝑁𝑖,𝑝 (𝑡) · 𝑐𝑖 (5)

where𝑁𝑖,𝑝 (𝑡) are B-spline basis functions of degree 𝑝 . While compu-

tationally efficient and real-time capable, this method may remains

statistically distinguishable if the noise distribution does not pre-

cisely match human biomechanical curvature.

4.3.2 Strategy 2: Data-Driven History Matching. To achieve higher

fidelity, we leverage real human trajectories from our dataset. Given

a task vector ®𝑣task, we sample a reference trajectory Tref with similar

distance and direction, then apply an affine transformation to align

it. Each point 𝑝 ∈ Tref is transformed to 𝑝′ via:

𝑝′ = 𝑠 · 𝑅(𝜃 ) · (𝑝 − 𝑝ref_start) + 𝑃start (6)

where 𝑅(𝜃 ) is a rotation matrix based on the angular difference,

and 𝑠 = ∥®𝑣task∥/∥®𝑣ref∥ is the scaling factor.
This strategy preserves authentic velocity profiles and micro-

jitters, though it requires an offline database.

4.3.3 Theoretical Foundations. We provide formal proofs for three

theorems in Appendix C. Theorem 1 bounds a detector’s efficacy

by the Jensen-Shannon divergence between human and agent dis-

tributions. Theorem 2 proves that variance injection (e.g., B-spline)

strictly reduces this divergence. Finally, Theorem 3 demonstrates

that History Matching is asymptotically superior, as agent behavior

converges toward the true human distribution.

4.3.4 Strategy 3: Fake Actions. Tomask the long inference latencies

identified in Section 3, the wrapper injects micro-interactions (e.g.,

slight scrolls or hovers) during idle periods. These non-functional

inputs break the long-tail interval distribution, shifting the agent’s

temporal profile toward continuous human-like interaction.

4.3.5 Strategy 4: Longer Presses. To humanize the near-zero tap

durations of raw agents, we sample durations from a Gaussian

distribution fitted to human tap data, ensuring touch events mimic

realistic physical contact.

5 Experiments & Analysis
In this section, we provide our whole detection and humanization

results, as well as in-depth feature analysis to find the easiest and

hardest feature to humanize.
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Table 1: Experiment results of humanization strategies across five distinct application domains. We compare the baseline
(RAW) against various combinations of humanization methods, including swipe trajectory adjustment (B-spline vs. History
Matching), interval noise injection (Fake), and tap duration adjustment (Long). The right block reports the detection accuracy
(lower is better) of different classifiers SVM and XGBoost and rule-based checks, alongside the final Task Accuracy.

Task Mode

Humanization Methods Detection Rules

swipe interval tap swipe interval tap utility

b-spline history fake long max single SVM acc XGB acc int.acc tap.acc task acc

Social Media

RAW x x x x 0.9969 0.9817 1.0000 0.8838 0.9977 0.4833

online x ✓ x ✓ 0.8286 0.8750 0.9773 0.8798 0.6341 0.5625

online x ✓ x x 0.7651 0.9756 1.0000 0.9060 0.9976 0.6667

online x ✓ ✓ ✓ 0.9998 0.9963 0.9993 0.5999 0.6210 0.4500

offline x ✓ x x 0.7190 0.9633 0.9450 0.8838 0.9977 -

offline ✓ x x x 0.8507 0.9633 0.9817 0.8838 0.9977 -

offline x x x ✓ 1.0000 0.9773 1.0000 0.8798 0.6341 -

offline x x ✓ x 0.9969 0.9817 1.0000 0.5274 0.9977 -

offline x ✓ ✓ ✓ 0.8286 0.8750 0.9773 0.5260 0.6341 -

offline ✓ x ✓ ✓ 0.8507 0.9633 0.9817 0.5274 0.6137 -

Shopping

RAW x x x x 0.9982 0.9887 1.0000 0.9056 0.9840 0.8148

online x ✓ x ✓ 0.9249 0.9593 0.9889 0.8969 0.6133 0.7069

online x ✓ x x 0.9769 0.9570 0.9785 0.9196 0.9971 0.9500

online x ✓ ✓ ✓ 0.9989 0.9962 0.9986 0.5718 0.6278 0.6000

offline x ✓ x x 0.8780 0.9323 0.9925 0.9056 0.9840 -

offline ✓ x x x 0.9336 0.9774 0.9925 0.9056 0.9840 -

offline x x x ✓ 1.0000 0.9778 1.0000 0.8969 0.6133 -

offline x x ✓ x 0.9982 0.9887 1.0000 0.5089 0.9840 -

offline x ✓ ✓ ✓ 0.9249 0.9593 0.9889 0.5104 0.6133 -

offline ✓ x ✓ ✓ 0.9336 0.9774 0.9925 0.5089 0.6105 -

Video Streaming

RAW x x x x 1.0000 0.9850 1.0000 0.9186 0.9956 0.6094

online x ✓ x ✓ 0.9494 0.9502 0.9950 0.9120 0.6186 0.8393

online x ✓ x x 0.9929 0.9942 0.9770 0.9112 0.9990 0.7500

online x ✓ ✓ ✓ 0.9993 0.9968 0.9974 0.5621 0.6276 0.7500

offline x ✓ x x 0.9306 0.9300 0.9850 0.9186 0.9956 -

offline ✓ x x x 0.9390 0.9650 0.9850 0.9186 0.9956 -

offline x x x ✓ 1.0000 0.9950 1.0000 0.9120 0.6186 -

offline x x ✓ x 1.0000 0.9850 1.0000 0.5195 0.9956 -

offline x ✓ ✓ ✓ 0.9494 0.9502 0.9950 0.5196 0.6186 -

offline ✓ x ✓ ✓ 0.9390 0.9650 0.9850 0.5195 0.6129 -

Trip Planning

RAW x x x x 0.9984 0.9817 0.9954 0.7998 0.9954 0.7500

online x ✓ x ✓ 0.8153 0.9479 0.9905 0.8047 0.6264 0.7143

online x ✓ x x 0.8721 0.9278 0.9896 0.8640 0.9981 0.7000

online x ✓ ✓ ✓ 0.9992 0.9945 0.9989 0.5011 0.6110 0.1500

offline x ✓ x x 0.8421 0.8995 0.9863 0.7998 0.9954 -

offline ✓ x x x 0.8855 0.9726 0.9909 0.7998 0.9954 -

offline x x x ✓ 0.9970 0.9953 1.0000 0.8047 0.6264 -

offline x x ✓ x 0.9984 0.9817 0.9954 0.5718 0.9954 -

offline x ✓ ✓ ✓ 0.8153 0.9479 0.9905 0.5704 0.6264 -

offline ✓ x ✓ ✓ 0.8855 0.9726 0.9909 0.5718 0.6089 -

Office & Learning

RAW x x x x 1.0000 0.9826 1.0000 0.8744 0.9974 0.5750

online x ✓ x ✓ 0.7782 0.9265 0.9926 0.8803 0.6263 0.5167

online x ✓ x x 0.9446 0.9571 1.0000 0.8967 0.9988 0.5375

online x ✓ ✓ ✓ 0.9997 0.9953 0.9989 0.5606 0.6177 0.2875

offline x ✓ x x 0.7720 0.9391 0.9739 0.8744 0.9974 -

offline ✓ x x x 0.8178 0.9739 0.9913 0.8744 0.9974 -

offline x x x ✓ 1.0000 0.9926 0.9926 0.8803 0.6263 -

offline x x ✓ x 1.0000 0.9826 1.0000 0.5183 0.9974 -

offline x ✓ ✓ ✓ 0.7782 0.9265 0.9926 0.5182 0.6263 -

offline ✓ x ✓ ✓ 0.8178 0.9739 0.9913 0.5183 0.6134 -
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5.1 Comprehensive Results of Humanization
5.1.1 Baseline Vulnerability Analysis. Results in Table 1 confirm

the high detectability of non-humanized agents. Across all clusters,

the XGBoost and SVM classifiers achieve near-perfect accuracy

(e.g., 0.995 and 0.98), demonstrating that raw agent trajectories

contain distinct mechanical patterns that are trivial for ML models

to identify.

5.1.2 Experimental Settings. We implement four humanization

strategies targeting distinct dimensions:

• Swipe: B-spline Noise and History Matching serve as mutually

exclusive trajectory generation methods.

• Tap & Interval: Long Press (tap duration) and Fake Action (tem-

poral intervals) can be superimposed on any swipe strategy.

Evaluations are conducted in online mode: real-time execution;

measures task success and offline mode: post-hoc modification;

isolates detection evasion from static utility.

5.1.3 Main Results. Results in Table 3 reveal a clear performance

hierarchy:HistoryMatching consistently outperforms B-spline Noise.
In Cluster 0, History Matching achieves a significantly lower de-

tection score (0.7190 vs. 0.8507) and reduces XGBoost accuracy to

0.9450, compared to B-spline’s 0.9817. This confirms that adapt-
ing empirical human data provides a more robust defense
than synthetic smoothing.

Fake Action decisively neutralizes interval-based rules, reducing

accuracy to ∼0.52 (near random guessing).However, this intro-
duces a trade-off:while enhancing imitability, non-functional
steps may disrupt task flow and degrade online utility. Mean-

while, Long Press effectively bypasses tap-duration heuristics, re-

ducing detection accuracy in Cluster 1 from 0.9840 to 0.6133 by

simply matching human duration distributions.

Contrary to a simple modular “plug-and-play” assump-
tion, our results reveal a complex interplay between strate-
gies. While Fake Action successfully neutralizes interval-based

rules, the second and fourth rows of the online results in Table 1

shows that its injection of fixed, repetitive motions can actually in-

crease the overall detectability of the trajectory. This suggests that

naive fake action injection lacks orthogonality; by introducing pre-

dictable mechanical artifacts, it facilitates detection in other feature

dimensions. Consequently, achieving comprehensive imitability re-

quires a more nuanced synchronization between temporal masking

and trajectory generation to ensure that humanizing one dimension

does not inadvertently compromise another.

5.2 In-Depth Feature Analysis
Table 2 evaluates the baseline (RAW) against three humanization

strategies using an optimal ROC thresholding approach. Detection

accuracy serves as the primary metric, where 1.0 indicates per-

fect distinguishability and 0.5 signifies successful humanization.

To identify the limits of these strategies, we rank 24 behavioral

features by their resistance to masking. As shown in Figure 4, while

certain attributes are easily humanized, others remain persistent

bottlenecks tied to the fundamental architecture of GUI agents.

Detailed results are available in Appendix G.

Table 2: Comparison of single-feature and model-based de-
tection accuracy for Social Media. Results show the classifi-
cation accuracy for the Raw baseline versus Online Rotation
& Match (On.RM), Offline Rotation & Match (Off.RM), and
B-Spline (BS) methods. Features are ranked by their discrim-
inative power on the raw dataset.

Metric RAW On.RM Off.RM BS

maxDev 0.9969 0.5515 0.6186 0.7556

meanResultantLength 0.9878 0.6818 0.6286 0.6979

ratio_end_to_len 0.9878 0.6451 0.5798 0.5826

duration 0.8583 0.6907 0.5470 0.8507

a20 0.8355 0.8286 0.7190 0.7686

acc_first5pct 0.8244 0.5897 0.5532 0.8093

a80 0.8154 0.6575 0.6205 0.6560

dev80 0.7645 0.5310 0.6445 0.5476

dev20 0.7634 0.5038 0.5560 0.5111

dev50 0.7055 0.5510 0.6416 0.5251

v80 0.6996 0.5188 0.6301 0.7026

avgDirection 0.6763 0.5515 0.5900 0.5872

direction 0.6734 0.5470 0.6734 0.5758

startY 0.6581 0.7472 0.6581 0.6581

speed 0.6531 0.5000 0.6100 0.6329

startX 0.6531 0.5310 0.6531 0.5730

a50 0.6447 0.7789 0.6953 0.6501

displacement 0.6416 0.5154 0.6416 0.6387

v50 0.6329 0.5407 0.6243 0.6387

endX 0.6243 0.5262 0.6243 0.5251

endY 0.6178 0.7279 0.6178 0.6232

v20 0.6014 0.5479 0.5843 0.6014

length 0.5617 0.5271 0.5560 0.5588

v_last3_median 0.5419 0.6637 0.6313 0.5560

svm_accuracy 0.9817 0.8750 0.9633 0.9633

xgb_accuracy 1.0000 0.9773 0.9450 0.9817

5.2.1 Feature Complexity vs. Detectability. We randomly choose

features as inputs for SVM and XGBoost to explore how the feature

number affects detection accuracy. As shown in Figure 5, detec-

tion accuracy scales logarithmically with feature count, plateauing

after an initial steep rise. While RAW swipes reach near 100% de-

tectability with only 5–10 features, the rotation_and_match strategy
maintains a persistent detectability gap. Specifically, in SVM analy-

sis, humanized accuracy remains between 0.85 and 0.95 even at 24

features. in XGBoost, despite faster convergence, humanized trajec-

tories consistently underperform the RAW baseline. This confirms

that our empirical humanization effectively masks mechanical pat-

terns, forcing both linear and non-linear classifiers toward lower

performance bounds across diverse contexts.

5.2.2 The Easiest Features. Path shape metrics are the easiest
to humanize. As shown in Table 2, content-agnostic metrics like

maxDev and ratio_end_to_len drop from near-perfect detectabil-

ity (∼0.99) to near-random levels (0.55–0.64) after humanization.

By applying mathematical transformations like Rotation & Match

or B-splines, we can synthesize human-like motor imperfections

without affecting task outcomes, making movement curvature the

low-hanging fruit of humanization.
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Figure 4: Impact of humanization on detection accuracy across feature clusters. The chart compares the detection accuracy of
raw agent traces (light green) versus the minimum detectability achieved after applying humanization methods (dark green).
The consistent drop in accuracy across most clusters demonstrates the effectiveness of the proposed methods in evading
detection.
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Figure 5: Impact of Feature Selection on Detection Accuracy. Comparison of (a) SVM and (b) XGBoost performance as the
number of features increases.

5.2.3 The Hardest Features. Precision and temporal rhythm
remain resistant due to their direct conflict with Task Utility.
The first one is Endpoint Precision.While paths can be curved,

scattering landing points is risky. In Table 2, endY detectability

actually doesn’t decrease. Unlike humans who exhibit natural vari-

ance, agents target UI node centers. Intentionally adding coordinate

noise without a granular understanding of clickable boundaries

risks missing targets, forcing a trade-off between imitability and

accuracy.

Another one is Action Interval. Agents suffer from LMM in-

ference latency. While injecting fake actions aligns the temporal

distribution with humans (see Fig. 11 in Appendix G), it severely

compromises utility. As seen in the Trip Planning task (Table 1),

the accuracy plummets from 0.75 to 0.15. Blindly injected actions

often trigger unintended state changes. Since the agent is unaware

of these transitions, the original plan fails.

Hard-coded injections lack UI awareness, while agent-generated

ones incur further latency. A promising future direction is to employ

a lightweight Guard Agent with sufficient visual understanding to

identify safe zones for fake actions without the latency penalty of

the main LMM.

6 Related Works
In this section, we provide related works. Due to space constraints, a

comprehensive review of related works is provided in Appendix D.

LMM-based GUI Agents Mobile automation has evolved from

rigid scripts to autonomous agents powered by Large Multimodal

Models (LMMs) [30, 36, 42]. Recent frameworks, such as AppA-

gent [60], Mobile-Agent [47, 58], CogAgent [23], and others [27, 33,

34], utilize visual perception to interact with interfaces, extending

capabilities to web navigation [12, 57] and OS-level control [7, 52].

However, these works prioritize Task Success Rate (Utility) via
optimization techniques [21, 32, 55]. Consequently, their motion

control remains largely deterministic, creating a distinct behav-

ioral gap compared to human users and leaving them vulnerable to

detection.

Adversarial Dynamics in Digital Ecosystems The conflict
between agent efficiency and platform attention economies [2, 29]

has sparked adversarial dynamics. Existing research predominantly

focuses on Robustness versus Perturbation [51, 53, 54, 61]. Re-

cent studies demonstrate attacks on visual grounding [9, 13, 22],
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ranging from environmental injections [4, 6, 28, 63] and visual ad-

versaries [11, 14, 62] to backdoors [48, 50, 56]. Unlike these works

which address functional availability, we focus on survivability
against behavioral detection, framing the interaction as a “Tur-

ing Test on Screen.”

Bot Detection and Behavioral Biometrics Traditional bot
detection [26, 35, 44] primarily identifies rigid scripts via deter-

ministic patterns and fingerprints. In the mobile domain, detec-

tion leverages Behavioral Biometrics, utilizing touch dynamics

(e.g., pressure, velocity) for user verification [3, 15, 16, 25, 41, 59].

While recent works extend these principles to mouse or game dy-

namics [24, 37] and address robustness against replay or robotic

attacks [1, 18, 39, 59], a critical gap remains regarding LMM-based

agents. Unlike distinctively rigid bots or perfect replay attacks,

LMM agents possess stochastic reasoning capabilities yet exhibit-

ing mechanical execution, which current paradigms fail to address

systematically.

7 Discussion & Future Work
The “Turing Test on Screen” serves not merely as a technical bench-

mark, but as the prelude to a long-term evolutionary arms race

between digital platforms and autonomous agents. In this conclud-

ing section, we discuss the anticipated trajectories of this conflict

from both defensive and offensive perspectives.

7.1 The Future of Agent Humanization
To survive within this escalated detection landscape, agent human-

ization techniques must evolve beyond simple trajectory smoothing.

We identify three key directions for future research:

7.1.1 From Post-Processing to End-to-EndHumanization. TheWrap-

per approach adopted in this study faces an inherent trade-off

between Offline Quality and Online Latency. Retrieving and

adapting high-fidelity human trajectories introduces computational

overhead. In real-time environments, this latency may cause the

agent to miss transient UI events such as a closing popup window,

thereby negatively impacting the Task Success Rate.

We posit that humanization should be intrinsic to the model

architecture itself. Rather than relying on latency-inducing post-

processing, future Large Multimodal Models should be trained or

fine-tuned to generate humanized trajectories directly via an end-

to-end framework.

7.1.2 Personalized Humanization. Detection algorithms may even-

tually advance to Personalized Detection, verifying not merely

whether a user is human, but whether the behavior matches the

specific user’s historical profile. Consequently, agents must advance

towards Personalized Humanization, where the system learns

to mimic the unique motor patterns and behavioral habits of its

specific user rather than a generic population average.

7.1.3 Generalized Cross-Modal Humanization. Finally, human in-

teraction is fundamentally multimodal. While our current bench-

mark prioritizes Touch and Swipe events, future iterations of the

AHB should extend their scope to encompass additional modali-

ties. Specifically, this includes Typing Dynamics, which entails

simulating keystroke rhythms defined by realistic error rates and

inter-key latency variations. Furthermore, it is essential to model

Scrolling and Reading Behaviors, where scroll velocity mod-

ulates in response to content density rather than maintaining an

artificial constant speed.

7.1.4 AHB as an Evolutionary Compass. Ultimately, the Agent Hu-

manization Benchmark (AHB) transcends its role as a mere evalu-

ation metric to become a cornerstone of a new survival-centric
design philosophy for GUI agents. By quantifying the trade-off

between Imitability and Utility, AHB serves as a fitness function

that drives a paradigm shift: from the singular pursuit of efficiency

to a dual-objective optimization of architectural resilience and be-

havioral camouflage.

In the evolving arms race between platforms and user agency,

AHB guides the development of indistinguishable digital citi-
zensnext-generation agents that possess both the functional power

to assist users and the behavioral nuance required to coexist har-

moniously in adversarial digital ecosystems.

7.2 The Future of Agent Detection
Current detection methodologies predominantly operate at the

Execution Layer, scrutinizing the kinematic fidelity of individual

actions. However, as humanization strategies approximate motor

perfection, the biometric surface between humans and agents will

blur. We posit that the adversarial frontier may shift to the Intent
Layer.

Consequently, the ultimate form of the Turing Test on Screenwill

evolve from distinguishing whose hand is moving to determining

whose brain is thinking. Future detectors are expected to model

behavioral sequences over longer horizons, seeking signs of human

curiosity, distraction, and indecision that algorithmic efficiency

inherently strives to eliminate.

More discussion on 1. the robustness of detection baselines 2.

delineating the scope from motion dynamics to physical sensors 3.

the imitability-utility pareto frontier 4. broder impact and ethical

consideration are provided in Appendix E.

8 Conclusion
This paper introduces the “Turing Test on Screen,” a novel paradigm

evaluating the anti-detection capabilities of autonomous GUI agents

through behavioral humanization. By formalizing agent-platform

interactions as a MinMax optimization problem, we established

the Agent Humanization Benchmark (AHB) and a high-fidelity

dataset to quantify the trade-off between imitability and task utility.

Our findings demonstrate that while vanilla LMM-based agents are

highly detectable due to kinematic anomalies, our proposed hu-

manization strategies significantly enhance behavioral authenticity

both theoretically and empirically while maintaining performance.

As the adversarial landscape evolves, we anticipate a paradigm

shift in detection from execution-level kinematics to intent-level

patterns. The AHB serves as a compass for this transition, guid-

ing the development of agents that move beyond mere functional

efficiency toward seamless coexistence within human-centric dig-

ital infrastructures. Ultimately, this work lays the foundation for

autonomous agents to sustainably safeguard user agency in increas-

ingly adversarial online environments.



Turing Test on Screen: A Benchmark for Mobile GUI Agent Humanization

References
[1] Mohit Agrawal, Pragyan Mehrotra, Rajesh Kumar, and Rajiv Ratn Shah. 2022.

GANTouch: An Attack-Resilient Framework for Touch-Based Continuous Au-

thentication System. IEEE Transactions on Biometrics, Behavior, and Identity
Science 4, 4 (2022), 533–543. doi:10.1109/TBIOM.2022.3206321

[2] Amine Allouah, Omar Besbes, Josué D Figueroa, Yash Kanoria, and Akshit Kumar.

2025. What Is Your AI Agent Buying? Evaluation, Biases, Model Dependence,

& Emerging Implications for Agentic E-Commerce. arXiv:2508.02630 [cs.AI]

https://arxiv.org/abs/2508.02630

[3] Reem Alrawili, Ali Abdullah S. AlQahtani, and Muhammad Khurram Khan. 2024.

Comprehensive Survey: Biometric User Authentication Application, Evaluation,

and Discussion. arXiv:2311.13416 [cs.CR] https://arxiv.org/abs/2311.13416

[4] Chaoran Chen, Zhiping Zhang, Bingcan Guo, Shang Ma, Ibrahim Khalilov,

Simret A Gebreegziabher, Yanfang Ye, Ziang Xiao, Yaxing Yao, Tianshi Li,

and Toby Jia-Jun Li. 2025. The Obvious Invisible Threat: LLM-Powered GUI

Agents’ Vulnerability to Fine-Print Injections. arXiv:2504.11281 [cs.HC] https:

//arxiv.org/abs/2504.11281

[5] Tianqi Chen. 2016. XGBoost: A Scalable Tree Boosting System. Cornell University
(2016).

[6] Yurun Chen, Xavier Hu, Keting Yin, Juncheng Li, and Shengyu Zhang. 2025.

Evaluating the Robustness of Multimodal Agents Against Active Environmental

Injection Attacks. arXiv:2502.13053 [cs.CL] https://arxiv.org/abs/2502.13053

[7] Pengzhou Cheng, Zheng Wu, Zongru Wu, Tianjie Ju, Aston Zhang, Zhuosheng

Zhang, and Gongshen Liu. 2025. Os-kairos: Adaptive interaction for mllm-

powered gui agents. In Findings of the Association for Computational Linguistics:
ACL 2025. 6701–6725.

[8] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
learning 20, 3 (1995), 273–297.

[9] Xuanming Cui, Alejandro Aparcedo, Young Kyun Jang, and Ser-Nam Lim. 2023.

On the Robustness of Large Multimodal Models Against Image Adversarial

Attacks. arXiv:2312.03777 [cs.CV] https://arxiv.org/abs/2312.03777

[10] Carl De Boor. 1972. On calculating with B-splines. Journal of Approximation
Theory 6, 1 (1972), 50–62. doi:10.1016/0021-9045(72)90080-9

[11] Vincenzo De Rosa, Fabrizio Guillaro, Giovanni Poggi, Davide Cozzolino, and

Luisa Verdoliva. 2024. Exploring the adversarial robustness of clip for ai-

generated image detection. In 2024 IEEE International Workshop on Information
Forensics and Security (WIFS). IEEE, 1–6.

[12] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi

Wang, Huan Sun, and Yu Su. 2023. Mind2Web: Towards a General-

ist Agent for the Web. In Advances in Neural Information Processing Sys-
tems, Vol. 36. https://proceedings.neurips.cc/paper_files/paper/2023/hash/

eb5b0142d76d499276d1e433f4460596-Abstract-Conference.html

[13] Yinpeng Dong, Huanran Chen, Jiawei Chen, Zhengwei Fang, Xiao Yang, Yichi

Zhang, Yu Tian, Hang Su, and Jun Zhu. 2023. How robust is google’s bard to

adversarial image attacks? arXiv preprint arXiv:2309.11751 (2023).
[14] Hao Fang, Jiawei Kong, Bin Chen, Tao Dai, Hao Wu, and Shu-Tao Xia. 2024.

CLIP-GuidedGenerative Networks for Transferable TargetedAdversarial Attacks.

arXiv:2407.10179 [cs.CV] https://arxiv.org/abs/2407.10179

[15] Tao Feng, Ziyi Liu, Kyeong-An Kwon, Weidong Larry Shi, Bogdan Carbunar,

Jiang Yifei, and Nhung Nguyen. 2012. Continuous mobile authentication using

touchscreen gestures. 2012 IEEE Conference on Technologies for Homeland Security
(HST) (2012), 451–456. https://api.semanticscholar.org/CorpusID:10805562

[16] Mario Frank, Ralf Biedert, Eugene Ma, Ivan Martinovic, and Dawn Song. 2012.

Touchalytics: On the applicability of touchscreen input as a behavioral biometric

for continuous authentication. IEEE transactions on information forensics and
security 8, 1 (2012), 136–148.

[17] Mario Frank, Ralf Biedert, Eugene Ma, Ivan Martinovic, and Dawn Song. 2013.

Touchalytics: On the Applicability of Touchscreen Input as a Behavioral Biomet-

ric for Continuous Authentication. IEEE Transactions on Information Forensics
and Security 8, 1 (2013), 136–148. doi:10.1109/TIFS.2012.2225048

[18] Neil Zhenqiang Gong, Mathias Payer, Reza Moazzezi, and Mario Frank. 2016.

Forgery-Resistant Touch-based Authentication on Mobile Devices. In Proceedings
of the 11th ACM on Asia Conference on Computer and Communications Security
(Xi’an, China) (ASIA CCS ’16). ACM, New York, NY, USA, 499–510. doi:10.1145/

2897845.2897908

[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Gener-

ative Adversarial Nets. In Advances in Neural Information Processing Sys-
tems, Vol. 27. 2672–2680. https://proceedings.neurips.cc/paper/2014/file/

5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[20] Alex Graves. 2012. Long short-term memory. Supervised sequence labelling with
recurrent neural networks (2012), 37–45.

[21] Jihao Gu, Qihang Ai, Yingyao Wang, Pi Bu, Jingxuan Xing, Zekun Zhu, Wei

Jiang, Ziming Wang, Yingxiu Zhao, Ming-Liang Zhang, et al. 2025. Mobile-R1:

Towards Interactive Reinforcement Learning for VLM-Based Mobile Agent via

Task-Level Rewards. arXiv preprint arXiv:2506.20332 (2025).

[22] Xiangming Gu, Xiaosen Zheng, Tianyu Pang, Chao Du, Qian Liu, Ye Wang, Jing

Jiang, and Min Lin. 2024. Agent smith: A single image can jailbreak one million

multimodal llm agents exponentially fast. arXiv preprint arXiv:2402.08567 (2024).

[23] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Jun-

hui Ji, Yan Wang, Zihan Wang, Yuxiao Dong, Ming Ding, and Jie Tang. 2024.

CogAgent: A Visual Language Model for GUI Agents. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 14281–14290.
https://arxiv.org/abs/2312.08914

[24] Simon Khan, Charles Devlen, Michael Manno, and Daqing Hou. 2024. Mouse

dynamics behavioral biometrics: A survey. Comput. Surveys 56, 6 (2024), 1–33.
[25] Christina J. Kroeze and Katherine Mary Malan. 2016. User Authentication

based on Continuous Touch Biometrics. South Afr. Comput. J. 28 (2016). https:

//api.semanticscholar.org/CorpusID:64342980

[26] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine. 2020.

Browser fingerprinting: A survey. ACM Transactions on the Web (TWEB) 14, 2
(2020), 1–33.

[27] Ning Li, Xiangmou Qu, Jiamu Zhou, Jun Wang, Muning Wen, Kounianhua Du,

Xingyu Lou, Qiuying Peng, and Weinan Zhang. 2025. MobileUse: A GUI Agent

with Hierarchical Reflection for Autonomous Mobile Operation. arXiv preprint
arXiv:2507.16853 (2025).

[28] Zeyi Liao, Lingbo Mo, Chejian Xu, Mintong Kang, Jiawei Zhang, Chaowei Xiao,

Yuan Tian, Bo Li, and Huan Sun. 2025. EIA: Environmental Injection Attack on

Generalist Web Agents for Privacy Leakage. arXiv:2409.11295 [cs.CR] https:

//arxiv.org/abs/2409.11295

[29] Jianghao Lin, Jiachen Zhu, Zheli Zhou, Yunjia Xi, Weiwen Liu, Yong Yu,

and Weinan Zhang. 2025. Superplatforms Have to Attack AI Agents.

arXiv:2505.17861 [cs.AI] https://arxiv.org/abs/2505.17861

[30] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023. Vi-

sual Instruction Tuning. In Advances in Neural Information Processing Sys-
tems, Vol. 36. https://proceedings.neurips.cc/paper_files/paper/2023/file/

6dcf277ea32ce3288914faf369fe6de0-Paper-Conference.pdf

[31] Xiao Liu, Bo Qin, Dongzhu Liang, Guang Dong, Hanyu Lai, Hanchen Zhang,

Hanlin Zhao, Iat Long Iong, Jiadai Sun, Jiaqi Wang, Junjie Gao, Junjun Shan,

Kangning Liu, Shudan Zhang, Shuntian Yao, Siyi Cheng, Wentao Yao, Wenyi

Zhao, Xinghan Liu, Xinyi Liu, Xinying Chen, Xinyue Yang, Yang Yang, Yifan

Xu, Yu Yang, Yujia Wang, Yulin Xu, Zehan Qi, Yuxiao Dong, and Jie Tang. 2024.

AutoGLM: Autonomous Foundation Agents for GUIs. arXiv:2411.00820 [cs.HC]

https://arxiv.org/abs/2411.00820

[32] Fanbin Lu, Zhisheng Zhong, Shu Liu, Chi-Wing Fu, and Jiaya Jia. 2025. ARPO:

End-to-End Policy Optimization for GUI Agents with Experience Replay. arXiv
preprint arXiv:2505.16282 (2025).

[33] Xinbei Ma, Yiting Wang, Yao Yao, Tongxin Yuan, Aston Zhang, Zhuosheng

Zhang, and Hai Zhao. 2024. Caution for the environment: Multimodal agents

are susceptible to environmental distractions. arXiv preprint arXiv:2408.02544
(2024).

[34] Xinbei Ma, Zhuosheng Zhang, and Hai Zhao. 2024. Coco-agent: A compre-

hensive cognitive mllm agent for smartphone gui automation. arXiv preprint
arXiv:2402.11941 (2024).

[35] Ahmed Mahfouz, Tarek M Mahmoud, and Ahmed Sharaf Eldin. 2017. Sensor-

based Continuous Authentication of Smartphones’ Users Using Behavioral Bio-

metrics: A Survey. IEEE Access 5 (2017), 15226–15257. doi:10.1109/ACCESS.2017.
2734062

[36] OpenAI, Josh Achiam, Steven Adler, and Sandhini Agarwal. 2024. GPT-4 Techni-

cal Report. arXiv:2303.08774 [cs.CL] https://arxiv.org/abs/2303.08774

[37] Hsing-Kuo Pao, Kuan-Ta Chen, and Hong-Chung Chang. 2010. Game bot detec-

tion via avatar trajectory analysis. IEEE Transactions on Computational Intelli-
gence and AI in Games 2, 3 (2010), 162–175.

[38] Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian,

Junda Zhang, Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li,

Jiale Yang, Yu Miao, Woyu Lin, Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li,

Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei Zheng, Chaolin Jin, Chen Li, Xiao

Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang, Haifeng Liu, Feng

Lin, Tao Peng, Xin Liu, and Guang Shi. 2025. UI-TARS: Pioneering Automated

GUI Interaction with Native Agents. arXiv:2501.12326 [cs.AI] https://arxiv.org/

abs/2501.12326

[39] Abdul Serwadda, Vir V Phoha, Zibo Wang, Rajesh Kumar, and Diksha Shukla.

2016. Toward robotic robbery on the touch screen. ACM Transactions on Infor-
mation and System Security (TISSEC) 18, 4 (2016), 1–25.

[40] Claude E Shannon. 1948. A mathematical theory of communication. The Bell
system technical journal 27, 3 (1948), 379–423.

[41] Zhihao Shen, Shun Li, Xi Zhao, and Jianhua Zou. 2024. IncreAuth: Incremental-

Learning-Based Behavioral Biometric Authentication on Smartphones. IEEE
Internet of Things Journal 11 (2024), 1589–1603. https://api.semanticscholar.org/

CorpusID:259676407

[42] Gemini Team, Rohan Anil, and Sebastian Borgeaud. 2025. Gemini: A Family of

Highly Capable Multimodal Models. arXiv:2312.11805 [cs.CL] https://arxiv.org/

abs/2312.11805

https://doi.org/10.1109/TBIOM.2022.3206321
https://arxiv.org/abs/2508.02630
https://arxiv.org/abs/2508.02630
https://arxiv.org/abs/2311.13416
https://arxiv.org/abs/2311.13416
https://arxiv.org/abs/2504.11281
https://arxiv.org/abs/2504.11281
https://arxiv.org/abs/2504.11281
https://arxiv.org/abs/2502.13053
https://arxiv.org/abs/2502.13053
https://arxiv.org/abs/2312.03777
https://arxiv.org/abs/2312.03777
https://doi.org/10.1016/0021-9045(72)90080-9
https://proceedings.neurips.cc/paper_files/paper/2023/hash/eb5b0142d76d499276d1e433f4460596-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/eb5b0142d76d499276d1e433f4460596-Abstract-Conference.html
https://arxiv.org/abs/2407.10179
https://arxiv.org/abs/2407.10179
https://api.semanticscholar.org/CorpusID:10805562
https://doi.org/10.1109/TIFS.2012.2225048
https://doi.org/10.1145/2897845.2897908
https://doi.org/10.1145/2897845.2897908
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://arxiv.org/abs/2312.08914
https://api.semanticscholar.org/CorpusID:64342980
https://api.semanticscholar.org/CorpusID:64342980
https://arxiv.org/abs/2409.11295
https://arxiv.org/abs/2409.11295
https://arxiv.org/abs/2409.11295
https://arxiv.org/abs/2505.17861
https://arxiv.org/abs/2505.17861
https://proceedings.neurips.cc/paper_files/paper/2023/file/6dcf277ea32ce3288914faf369fe6de0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6dcf277ea32ce3288914faf369fe6de0-Paper-Conference.pdf
https://arxiv.org/abs/2411.00820
https://arxiv.org/abs/2411.00820
https://doi.org/10.1109/ACCESS.2017.2734062
https://doi.org/10.1109/ACCESS.2017.2734062
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2501.12326
https://arxiv.org/abs/2501.12326
https://arxiv.org/abs/2501.12326
https://api.semanticscholar.org/CorpusID:259676407
https://api.semanticscholar.org/CorpusID:259676407
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805


zhu et al.

[43] Alan M Turing. 1950. Computing Machinery and Intelligence. Mind 59, 236

(1950), 433–460. https://doi.org/10.1093/mind/LIX.236.433

[44] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2018.

{Fp-Scanner}: The privacy implications of browser fingerprint inconsistencies.

In 27th USENIX Security Symposium (USENIX Security 18). 135–150.
[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in neural information processing systems 30 (2017).
[46] John von Neumann and Oskar Morgenstern. 1944. Theory of Games and Economic

Behavior. Princeton University Press, Princeton, NJ.

[47] Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weiezhou Shen, Ji Zhang, Fei

Huang, and Jitao Sang. 2024. Mobile-Agent: Autonomous Multi-Modal Mobile

Device Agent with Visual Perception. arXiv preprint arXiv:2401.16158 (2024).

https://arxiv.org/abs/2401.16158

[48] Yifei Wang, Dizhan Xue, Shengjie Zhang, and Shengsheng Qian. 2024.

BadAgent: Inserting and Activating Backdoor Attacks in LLM Agents.

arXiv:2406.03007 [cs.CL] https://arxiv.org/abs/2406.03007

[49] Zhenhailong Wang, Haiyang Xu, Junyang Wang, Xi Zhang, Ming Yan, Ji Zhang,

Fei Huang, and Heng Ji. 2025. Mobile-Agent-E: Self-Evolving Mobile Assistant

for Complex Tasks. arXiv:2501.11733 [cs.CL] https://arxiv.org/abs/2501.11733

[50] Zixuan Weng, Xiaolong Jin, Jinyuan Jia, and Xiangyu Zhang. 2025. Foot-In-The-

Door: A Multi-turn Jailbreak for LLMs. In Proceedings of the 2025 Conference on
Empirical Methods in Natural Language Processing, Christos Christodoulopoulos,
Tanmoy Chakraborty, Carolyn Rose, and Violet Peng (Eds.). Association for

Computational Linguistics, Suzhou, China, 1939–1950. doi:10.18653/v1/2025.

emnlp-main.100

[51] Chen Henry Wu, Rishi Shah, Jing Yu Koh, Ruslan Salakhutdinov, Daniel Fried,

and Aditi Raghunathan. 2025. Dissecting Adversarial Robustness of Multimodal

LM Agents. arXiv:2406.12814 [cs.LG] https://arxiv.org/abs/2406.12814

[52] ZhengWu, HeyuanHuang, Xingyu Lou, XiangmouQu, Pengzhou Cheng, Zongru

Wu, Weiwen Liu, Weinan Zhang, Jun Wang, Zhaoxiang Wang, et al. 2025. Verios:

Query-driven proactive human-agent-gui interaction for trustworthy os agents.

arXiv preprint arXiv:2509.07553 (2025).
[53] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming

Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, et al. 2025. The rise and potential of

large language model based agents: A survey. Science China Information Sciences
68, 2 (2025), 121101.

[54] Chejian Xu, Mintong Kang, Jiawei Zhang, Zeyi Liao, Lingbo Mo, Mengqi Yuan,

Huan Sun, and Bo Li. 2025. AdvAgent: Controllable Blackbox Red-teaming on

Web Agents. arXiv:2410.17401 [cs.CR] https://arxiv.org/abs/2410.17401

[55] Yifan Xu, Xiao Liu, Xinghan Liu, Jiaqi Fu, Hanchen Zhang, Bohao Jing, Shudan

Zhang, YutingWang, Wenyi Zhao, and Yuxiao Dong. [n. d.]. Mobilerl: Advancing

mobile use agents with adaptive online reinforcement learning, 2025. URL
https://github. com/THUDM/MobileRL ([n. d.]).

[56] Wenkai Yang, Xiaohan Bi, Yankai Lin, Sishuo Chen, Jie Zhou, and Xu Sun. 2024.

Watch Out for Your Agents! Investigating Backdoor Threats to LLM-Based

Agents. arXiv:2402.11208 [cs.CR] https://arxiv.org/abs/2402.11208

[57] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. 2022.

WebShop: Towards Scalable Real-World Web Interaction with Grounded

Language Agents. In Advances in Neural Information Processing Systems,
Vol. 35. 20744–20757. https://proceedings.neurips.cc/paper_files/paper/2022/

file/82ad1e2f654af3d90a03d09a5b674843-Paper-Conference.pdf

[58] Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Zi-

wei Zheng, Feiyu Gao, Junjie Cao, Zhengxi Lu, et al. [n. d.]. Mobile-agent-v3: Fun-

damental agents for gui automation, 2025. URL https://arxiv. org/abs/2508.15144
4 ([n. d.]), 21–27.

[59] Ahmad Zairi Zaidi, Chun Yong Chong, Zhe Jin, Rajendran Parthiban, and

Ali Safaa Sadiq. 2021. Touch-based continuous mobile device authentication:

State-of-the-art, challenges and opportunities. Journal of Network and Computer
Applications 191 (2021), 103162.

[60] Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin

Fu, and Gang Yu. 2024. AppAgent: Multimodal Agents as Smartphone Users.

In The Twelfth International Conference on Learning Representations. https:

//openreview.net/forum?id=douVpgGL8y

[61] Hanrong Zhang, Jingyuan Huang, Kai Mei, Yifei Yao, Zhenting Wang, Chenlu

Zhan, Hongwei Wang, and Yongfeng Zhang. 2025. Agent Security Bench (ASB):

Formalizing and Benchmarking Attacks and Defenses in LLM-based Agents.

arXiv:2410.02644 [cs.CR] https://arxiv.org/abs/2410.02644

[62] Yudong Zhang, Ruobing Xie, Jiansheng Chen, Xingwu Sun, Zhanhui Kang, and

Yu Wang. 2025. QAVA: Query-Agnostic Visual Attack to Large Vision-Language

Models. arXiv:2504.11038 [cs.CV] https://arxiv.org/abs/2504.11038

[63] Yanzhe Zhang, Tao Yu, and Diyi Yang. 2025. Attacking Vision-Language Com-

puter Agents via Pop-ups. arXiv:2411.02391 [cs.CL] https://arxiv.org/abs/2411.

02391

[64] Zhong Zhang, Yaxi Lu, Yikun Fu, Yupeng Huo, Shenzhi Yang, Yesai Wu, Han

Si, Xin Cong, Haotian Chen, Yankai Lin, Jie Xie, Wei Zhou, Wang Xu, Yuan-

heng Zhang, Zhou Su, Zhongwu Zhai, Xiaoming Liu, Yudong Mei, Jianming Xu,

Hongyan Tian, Chongyi Wang, Chi Chen, Yuan Yao, Zhiyuan Liu, and Maosong

Sun. 2025. AgentCPM-GUI: Building Mobile-Use Agents with Reinforcement

Fine-Tuning. arXiv:2506.01391 [cs.AI] https://arxiv.org/abs/2506.01391

A The Conflict Between GUI Agents and App
Platforms

A.1 Background
To understand the gravity of this incident, it is essential to contex-

tualize the hardware involved. The conflict centers on devices like

the Nubia M153 smartphone, which features a deep integration of

ByteDance’s Doubao Mobile Assistant.
Unlike traditional voice assistants (e.g., Siri or Google Assistant)

that largely rely on official APIs, Doubao functions as a system-

level agent. It utilizes the INJECT_EVENTS permission and Vision-

Language Models (VLM) to “see” the screen and simulate physical

taps. This allows it to execute cross-app workflows without manual

input, promising a “zero-touch” experience for commands such as:

“Open WeChat and send a message to my wife saying
I’ll be home in 20 minutes.”

For the end-user, this flattens the friction of navigating multiple

apps. For app developers, however, this unauthorized “driving” of

their interface represents a significant security gray area.

A.2 The Incident
In late 2025, the theoretical tension between GUI agents and app

platforms escalated into operational failures.
3

A.2.1 The Automation Scenario. The Doubao agent allows users

to automate complex interaction chains via voice. For example,

instead of manually opening WeChat, finding a contact, and typing,

the user issues a voice command. The AI then visibly takes over the

screen, opening windows and simulating clicks to execute the task.

While ByteDance explicitly states that the assistant does not
perform sensitive operations like payments or identity ver-
ification, the agent still requires deep access to the app’s GUI to

function for standard tasks like messaging or searching.

A.2.2 The Security Backlash. Upon release, users of the Nubia

M153 immediately encountered service denials, including forced

logouts from WeChat and security warnings from banking applica-

tions like the Agricultural Bank of China. The conflict was driven
by the assistant’s reliance on the INJECT_EVENTS permission, a

high-privilege capability that allows software to programmatically

generate touch inputs and keystrokes. Consequently, the apps’ au-

tomated risk control measures interpreted the AI’s external control

as unauthorized manipulation, triggering defensive protocols de-

signed to prevent account hijacking and fraud.

A.3 Technical Mechanism of Conflict
The conflict stems from a fundamental incompatibility between

agentic automation and platform protocols. Since app plat-

forms like WeChat do not provide open APIs for third-party con-

trol, agents must resort to screen-driven techniques, treating the

application simply as a graphical user interface to be navigated vi-

sually. However, this approach directly clashes with the platforms’

3
https://opentools.ai/news/wechat-and-chinese-banking-apps-check-bytedances-

doubao-mobile-assistant-amid-privacy-and-security-concerns
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Figure 6: Doubao Mobile Assistant Working Scene on the Offical Website.

defensive architectures, which employ sophisticated anti-bot algo-

rithms to prevent bulk-spamming and fraud. From the platform’s

perspective, the agent’s interaction patterns were indistinguish-

able from malicious scripts; consequently, the system prioritized

security, defaulting to blocking any non-human input to prevent

potential data breaches.

A.4 Arguments and Implications
The standoff highlights the divergent incentives of the two parties:

(1) The OS/Agent Provider (ByteDance/Nubia): They argue for
User Agency and Innovation. They contend that since the user

explicitly authorized the assistant, the AI acts as a legitimate

digital proxy for human intent. ByteDance further emphasized

that their tool adheres to privacy standards and deliberately

avoids sensitive operations like financial transactions.

(2) The Super-Platform (Tencent/Banks): They cite Security
and Ecosystem Integrity. Reports indicate that WeChat’s re-

strictions were not specifically targeted at Doubao but were

unintentional triggers of existing risk control measures. They

implies that allowing external programs to drive the apps by-

passes critical security checks, creating a vulnerability that

could be exploited by malicious actors if such automation be-

comes normalized.

A.5 Outcome
The Doubao Incident serves as a critical case study for the GUI

Agent industry. It demonstrates that permissionless UI-based au-

tomation remains a fragile operational mode. Without formal API

agreements or standardized security protocols, AI agents attempt-

ing to navigate walled gardens will inevitably collide with the

defensive countermeasures of established software ecosystems.

B Feature Extraction and Statistical Analysis
In this section, we delineate the methodology for extracting discrim-

inative behavioral features from the raw event streams E defined in

Section 2. Following our adversarial framework, the fundamental

unit of behavioral analysis is the action 𝑎𝑡 . Each action, whether

performed by a human or a GUI agent, triggers a corresponding

event set 𝐸𝑡 .

Mathematically, each action is characterized by its triggered sig-

nature: 𝐸𝑡 = (𝑀𝑡 , 𝑆𝑡 ), where 𝑀𝑡 and 𝑆𝑡 denote the synchronized

MotionEvents and SensorEvents, respectively. The MotionEvent com-

ponent𝑀𝑡 consists of a series of FingerEvents {𝑓𝑛}𝑁𝑛=1, where each
𝑓𝑛 = (𝑥𝑛, 𝑦𝑛, 𝑡𝑛) encodes the spatial coordinates and timestamp at

sample 𝑛. Concurrently, the SensorEvent component 𝑆𝑡 captures

high-dimensional multimodal data generated during the execution

of 𝑎𝑡 :

𝑆𝑡 = {𝐴𝑐𝑐,𝐺𝑦𝑟𝑜, 𝑅𝑜𝑡𝑉𝑒𝑐,𝐺𝑟𝑎𝑣, 𝐿𝑖𝑛𝐴𝑐𝑐,𝑀𝑎𝑔, 𝐿𝑖𝑔ℎ𝑡, 𝑃𝑟𝑜𝑥} (7)

where these elements correspond to the Accelerometer, Gyroscope,

and other hardware sensors. Intervals between consecutive actions

represent periods of inactivity during state transitions 𝑠𝑡 → 𝑠𝑡+1.

B.1 Dataset Collection
Based on the definition of 𝑎𝑡 , we construct a large-scale, multi-

modal dataset to evaluate the discriminative power of the Detector
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Table 3: Task Clusters and Applications

Cluster ID Category Applications

0 Social Media Toutiao, Weibo, Xiaohongshu, Zhihu

1 Shopping JD, Taobao, Cainiao, Meituan, Eleme

2 Video Streaming iQIYI, Bilibili, QQ Music

3 Trip Planning Ctrip, Amap (Gaode), Umetrip, Qunar

4 Office & Learning Tencent Docs, Tencent Meeting, Youdao Dictionary, Haodafu

𝐷Θ. Table 4 and Table 5 provides a detailed breakdown of the dataset,

which spans two primary operator distributions:

• Human Operators (H ): Data collected from four distinct sub-

populations (Young Man, Young Woman, Middle-aged, and El-

derly) to account for physiological variances in human actions.

• GUI Agents (𝐺Φ): Action sequences recorded from state-of-the-

art models including UI-TARS, MobileAgent-E (GPT-4o/Claude-

3.5-Sonnet), AgentCPM and AutoGLM.

All experiments are conducted on the same device—a Xiaomi
MiMax 2 running MIUI 11.0.2.0—to ensure consistency and compa-

rability. Data are collected online, verbatim from the phone, while

humanization methods are applied in real time during agent actions

rather than post hoc, ensuring accurate assessment of their effects.

For humanized agents without fake actions, tap durations are

elongated, and swipes are rendered realistic via data-driven trajec-

tory matching. As shown in Table 1, some agents undergo only

swipe humanization, leaving tap durations unmodified. For agents

with fake actions, the applicable humanization techniques (tap

elongation and/or swipe humanization) are augmented with small

circular gestures (radius: 50 px) emitted from the last tap location

according to a Poisson process with rate 𝜆 = 0.9 Hz.

Sensor data recorded alongside interactions include:Accelerom-
eter (proper acceleration, 𝑚/𝑠2), Gyroscope (angular velocity,

rad/s),Magnetic Field (geomagnetic field, 𝜇T), Gravity (estimated

gravitational acceleration, derived from accelerometer), Linear Ac-
celeration (acceleration excluding gravity, obtained by subtracting

Gravity from Accelerometer), Rotation Vector (fused orientation

from Accelerometer, Gyroscope, and Magnetic Field), Light (ambi-

ent illuminance in lux), and Proximity (nearby object detection).

The latter two are hardware sensors; the rest include both physical

and virtual (software-fused) types. Visualization of sensor changes

across time axis is shown in Figure 7.

For more details, see the official documentation: Android Sensor

Overview and Android Sensor Types.

However, it is worth noting that while our dataset encompasses

both event types, achieving high-fidelity humanization of Sen-
sorEvents poses significant technical challenges. In realistic deploy-

ment scenarios, such as when a mobile device is placed stationary

on a flat surface, the intricate fluctuations of sensors like the Gyro-

scope and Magnetic Field are inherently difficult for GUI agents to

simulate authentically. The only viable path for an agent to simulate

such signals would require system-level API interventions to in-

ject synthetic sensor values. Consequently, this study intentionally

constrains its primary focus to the humanization of MotionEvents,
treating the investigation of sensor-level adversarial simulation as

a secondary objective to be addressed in future work.

Figure 7: Sensor Events Visulization as Time Changes.

B.2 The Definition of Tap and Swipe Actions
We categorize each action 𝑎𝑡 as either a tap or a swipe based on

the number of its FingerEvents within 𝑀𝑡 . Specifically, an action

is defined as a tap if |𝑓 | < 5 and a swipe if |𝑓 | ≥ 5. We visualize

every action from the perspective of length and duration. As is

shown in Figure 8, the duration of an action is nearly proportional

to its length, since—given the smartphone’s constant MotionEvent

sampling rate and the fact that finger movement during swipes

continuously generates new events—the effective MotionEvent gen-

eration rate remains roughly constant. Moreover, we can see many

actions with length < 5 clustered in the bottom-left corner of the

figure; these are classified as taps, consistent with the observation

that taps involve little to no finger movement between down and

up events.

B.3 24 statistical features
From these raw sequences, we derive 24 statistical features de-

tailed in Table 6, selected to capture specific biomechanical and

behavioral characteristics. The rationale for including the absolute

spatial coordinates of the trajectory’s start and end points stems

from the observation that users exhibit unique spatial preferences,

frequently interacting with specific areas on the screen regardless

of the underlying interface layout.

We utilize kinematic features to capture dynamic motion control

habits. Specifically, by calculating the average velocity of the
last five points of the trajectory, we can distinguish between

two different rolling behaviors: static release, where the user stops

moving before lifting their finger and ballistic release, where the

user maintains a certain lateral velocity when lifting their finger,

https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview
https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview
https://source.android.com/docs/core/interaction/sensors/sensor-types
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Table 4: Dataset composition of humans and raw agents across motion and sensor events.

Category Motion Event Sensor Event

Overall

Type Sub-population Tap Swipe Accel. Gyro. RotVec. Grav. LinAcc. Mag. Light Prox.

Human

Young Man 5050 2186 4516935 4516491 4482116 4516352 4516349 1101702 5300 566

37,768,698

Young Woman 1706 786 1300213 1300038 1279412 1300018 1300012 314457 2544 182

Middle-aged 782 208 743043 742953 742922 742953 742952 182605 1314 86

Elderly 644 161 651490 651402 641091 651399 651396 157573 1225 84

Agent

UI-TARS 772 380 2,991,281 2,991,215 2,971,001 2,991,077 2,991,074 730,144 579 212

243,090,929

Mobile-Agent-E (GPT-4o) 832 148 15,392,992 15,392,962 15,392,742 15,392,802 15,392,802 3,782,534 2,999 222

Mobile-Agent-E (Claude-Sonnet) 849 141 16,165,856 16,165,847 15,655,597 16,165,637 16,165,636 3,846,893 1,185 212

AgentCPM 2,400 166 3,343,441 3,343,425 3,343,258 3,343,303 3,343,305 821,607 472 175

AutoGLM 1,597 339 8,577,328 8,577,289 8,550,015 8,577,154 8,577,152 2,101,041 619 220

Table 5: Dataset composition of humanized agents with or without fake actions across motion and sensor events.

Category Motion Event Sensor Event

Overall

Type Sub-population Tap Swipe Accel. Gyro. RotVec. Grav. LinAcc. Mag. Light Prox.

Humanized

Agent

(w/o fake

action)

UI-TARS 1677 683 6357826 6357750 6318637 6357479 6357484 1552891 761 388

280,320,486

Mobile-Agent-E (GPT-4o) 1382 269 22018165 22018033 21964700 22017779 22017784 5397465 1354 401

Mobile-Agent-E (Claude-Sonnet) 675 46 12942360 12942301 12141290 12942167 12942158 2983499 2394 215

AgentCPM 1954 286 3583409 3583366 3583216 3583246 3583252 880616 420 174

AutoGLM 1797 348 8752376 8752336 8724506 8752198 8752196 2143920 632 225

Humanized

Agent

(with fake

action)

UI-TARS 735 6001 3213798 3213773 3200123 3213647 3213644 786520 2833 185

154,704,094Mobile-Agent-E (GPT-4o) 601 33187 14346123 14346063 14345898 14345959 14345962 3525565 425 178

AutoGLM 2201 21521 11921876 11921824 11921638 11921682 11921681 2929341 888 222
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Figure 8: The Lengths and Durations of Each Action. Actions
with |𝑓 | < 5 are considered taps.

resulting in inertial rolling. This distinction is typically associated

with a unique throwing velocity inherent to a particular user.

To comprehensively quantify the geometric linearity and curva-

ture of the action, we utilize themean resultant length to measure

how directed the action is. Specifically, all 𝑁 consecutive coordi-

nate pairs (𝑥𝑛, 𝑦𝑛), (𝑥𝑛+1, 𝑦𝑛+1) along the path define an ensemble

of 𝑁 − 1 unit direction vectors 𝑧𝑛 = exp(𝑖𝜙𝑛) with angles 𝜙𝑛 . The

mean resultant length 𝑅 of this ensemble is formally characterized

by:

𝑅 = (𝑁 − 1)−1
�����𝑁−1∑︁
𝑛=1

𝑧𝑛

����� (8)

This metric scales between 1 and 0, indicating a perfectly straight

line and uniformly random angles, respectively, and provide a ro-

bust measure of angular dispersion. Associated with this ensemble

is themean direction, defined as arg((𝑁 − 1)−1 ∑𝑁−1
𝑛=1 𝑧𝑛).

In addition, we calculated the path efficiency ratio, defined
as the Euclidean distance between the endpoints divided by the

total trajectory length, and the maximum signed perpendicular
deviation of the trajectory relative to the ideal line connecting the
endpoints. The signed deviation is particularly useful for identifying

the convexity of action arcs, which can serve as a potential indicator

of the user’s dominant hand.

Temporal dynamics provide further behavioral resolution. Fea-

tures such as action duration and inter-action latency act as

proxies for cognitive processing and reading speed, distinguishing

between users and agents who employ slow, continuous scrolling

and those who execute rapid, discrete page shifts.
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Table 6: Touch Dynamics Feature Descriptions with Information Gain (IG)

Variable Name Full Description Information Gain Explanation

Velocity (Kinematics)
v20 20%-perc. pairwise velocity 0.4487 Speed at lower 20th percentile (slow phase).

v50 50%-perc. pairwise velocity 0.4491 Median velocity (typical speed).

v80 80%-perc. pairwise velocity 0.4750 Speed at 80th percentile (peak speed).

speed average velocity 0.4238 Total distance divided by total duration.

v_last3_median median velocity at last 3 pts 0.4796 Deceleration behavior near target.

Acceleration (Kinematics)
a20 20%-perc. pairwise acc 0.4555 Acceleration at lower 20th percentile.

a50 50%-perc. pairwise acc 0.3583 Median acceleration (smoothness).

a80 80%-perc. pairwise acc 0.3616 Acceleration at 80th percentile (jerks).

acc_first5pct_median median acc. at first 5 pts 0.4197 Initial impulse force at touch-down.

Deviation & Linearity
dev20 20%-perc. dev. from line 0.5406 Lower bound deviation from straight line.

dev50 50%-perc. dev. from line 0.5911 Median deviation (general straightness).

dev80 80%-perc. dev. from line 0.5084 Major deviation (curves).

maxDev largest dev. from line 0.6726 Furthest point from ideal line (max arc).

Geometry & Spatial
length length of trajectory 0.4956 Actual path length traveled.

displacement direct end-to-end distance 0.5178 Linear distance between start and end.

ratio_end_to_length ratio end-to-end dist / length 0.6581 Path efficiency (1 = perfect straight line).

meanResultantLength mean resultant length 0.6581 Directional consistency statistic.

direction direction of end-to-end line 0.6052 Global angle of the action.

avgDirection average direction 0.6107 Average of local angles between points.

Coordinates & Time
startX / startY start x / start y 0.5167 / 0.4036 Touch-down coordinates.

endX / endY stop x / stop y 0.5160 / 0.3975 Lift-off coordinates.

duration action duration 0.5831 Total time in milliseconds.

B.4 Information Gain
To assess the utility of the extracted feature set in distinguishing

between authentic human inputs and agent operations, we ana-

lyze the information gain provided by each individual attribute.

Consistent with findings in behavioral biometrics, not all features

contribute equally; therefore, we quantify a measure of informa-
tiveness (𝐼𝐹 ) for each feature 𝐹 to reveal the hierarchy of feature

relevance.

We define this measure as the relative mutual information be-

tween the feature variable 𝐹 and the source identity variable 𝑈

(representing the class: Human or Agent). Formally, 𝐼𝐹 is calculated

as the ratio of the mutual information 𝐼 (𝐹 ;𝑈 ) to the entropy of the

source identity 𝐻 (𝑈 ):

𝐼𝐹 :=
𝐼 (𝐹 ;𝑈 )
𝐻 (𝑈 ) =

𝐻 (𝑈 ) − 𝐻 (𝑈 |𝐹 )
𝐻 (𝑈 ) = 1 − 𝐻 (𝑈 |𝐹 )

𝐻 (𝑈 ) (9)

Here, 𝐻 (𝑈 ) and 𝐻 (𝑈 |𝐹 ) denote the marginal entropy of the source

identity and the conditional entropy of the source identity given fea-

ture 𝐹 , respectively. This normalized metric yields a value between

0 and 1, where 0 indicates that the feature carries no discriminatory

information, and 1 implies that the feature strictly determines the

source identity.

Based on the quantitative analysis in Table 6, geometric features

(e.g.,maxDev, 𝐼𝐺 ≈ 0.66) demonstrate the highest discriminative

power, effectively capturing the contrast between natural human

motor noise and agent linearity. In contrast, acceleration statistics

and absolute coordinates exhibit low informativeness (𝐼𝐺 < 0.40)

due to their susceptibility to sensor noise and UI layout dependency.

Theoretically, features with higher mutual information are more

beneficial for distinguishing humans from agents. However, robust

detection is not achieved by individual metrics alone; rather, one

can gain more information by combining features that complement

each other to capture the full behavioral patterns.

To visualize potential redundancy within the feature space, Fig-

ure 9 presents a heatmap of pairwise correlation coefficients. The

color intensity reflects the magnitude of the correlation: darker

red denotes strong positive relationships, darker blue indicates

strong negative associations, and white signifies statistical indepen-

dence. While this matrix reveals distinct clusters of highly corre-

lated attributes, we do not exclude features based solely on these
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Figure 9: The correlation of these 24 features. Red color means stronger correlation.

metrics. It is well-established that correlated variables can still

contribute unique, complementary information when combined in

high-dimensional classification models. Consequently, we retain

the complete feature set for our SVM and XGBoost detectors. The

primary utility of this visualization is to empirically verify specific

behavioral hypotheses, such as the consistent positive synchroniza-

tion observed across the 20%, 50%, and 80% velocity percentiles.

C Theoretical Results
In this section, we provide a bunch of theoretical theorem to prove

the effectiveness of heuristic Noise Injection and data-driven history

matching

Let (X, F ) be the measurable space of behavioral trajectories.

Let 𝑃 ∈ P(X) denote the true distribution of Human behaviors, and

𝐺Φ ∈ P(X) denote the distribution of the RawAgent parameterized

byΦ. The HumanizationWrapper is modeled as aMarkov transition

kernel 𝐾 , yielding the humanized agent distribution 𝐺 ′
Φ =𝐺Φ𝐾 .

We posit two fundamental assumptions. First, we assume the

human distribution 𝑃 is absolutely continuous, whereas the Raw

Agent distribution𝐺Φ lies on a lower-dimensional manifold, imply-

ing they are mutually singular (𝑃 ⊥ 𝐺Φ). Second, we restrict the

detector 𝐷Θ to the class D𝐿 of 𝐿-Lipschitz continuous functions.

This is a standard assumption for neural networks with bounded

weights.

The detector aims to maximize the standard cross-entropy ob-

jective:

L𝐷 (𝐷Θ; 𝑃,𝐺
′
Φ) = E𝑥∼𝑃 [log𝐷Θ (𝑥)]+E𝑥∼𝐺 ′

Φ
[log(1−𝐷Θ (𝑥))] . (10)

The following theorem restates the classical result regarding the

detector’s optimal performance.

Theorem 1. For any fixed agent policy𝐺 ′
Φ, the maximum discrim-

ination capability of the detector is bounded by the Jensen–Shannon
divergence:

sup

𝐷Θ

L𝐷 (𝐷Θ; 𝑃,𝐺
′
Φ) = − log 4 + 2 · JS(𝑃 ∥ 𝐺 ′

Φ). (11)
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Proof. Following the derivation in [19], consider the integrand

𝑓 (𝑦) = 𝑝 (𝑥) log𝑦 + 𝑞(𝑥) log(1 − 𝑦) for a fixed 𝑥 . Setting
𝜕𝑓

𝜕𝑦
= 0

yields the optimal discriminator 𝐷∗ (𝑥) = 𝑝 (𝑥 )
𝑝 (𝑥 )+𝑞 (𝑥 ) . Substituting

𝐷∗
back into Eq. (10):

sup

𝐷

L𝐷 =

∫
𝑝 (𝑥) log 𝑝 (𝑥)

𝑝 (𝑥) + 𝑞(𝑥)𝑑𝑥 +
∫

𝑞(𝑥) log 𝑞(𝑥)
𝑝 (𝑥) + 𝑞(𝑥)𝑑𝑥

=

∫
𝑝 (𝑥) log 𝑝 (𝑥)

𝑝 (𝑥 )+𝑞 (𝑥 )
2

𝑑𝑥 +
∫

𝑞(𝑥) log 𝑞(𝑥)
𝑝 (𝑥 )+𝑞 (𝑥 )

2

𝑑𝑥 − 2 log 2

= KL(𝑃 ∥ 𝑀) + KL(𝐺 ′
Φ ∥ 𝑀) − log 4 = − log 4 + 2 · JS(𝑃 ∥ 𝐺 ′

Φ),

where𝑀 = (𝑃 +𝐺 ′
Φ)/2. □

We now analyze our first strategy, which injects variance via

randomized smoothing.

Theorem 2. Let 𝐾𝜎 be a strictly positive smoothing kernel and
𝐺 ′
Φ =𝐺Φ∗𝐾𝜎 . Then the smoothed agent strictly reduces the maximum

theoretical detectability:

JS(𝑃 ∥ 𝐺 ′
Φ) < JS(𝑃 ∥ 𝐺Φ) = log 2. (12)

Proof. For the Raw Agent, 𝑃 ⊥ 𝐺Φ implies disjoint supports.

Thus, the JS divergence is maximized:

JS(𝑃 ∥ 𝐺Φ) =
1

2

∫
Supp(𝑃 )

𝑝 log
2𝑝

𝑝
+ 1

2

∫
Supp(𝐺Φ )

𝑔 log
2𝑔

𝑔
= log 2.

For the smoothed agent,𝐺 ′
Φ admits a strictly positive density 𝑞′ (𝑥)

everywhere. On the support of 𝑃 , we strictly have
𝑝 (𝑥 )

𝑝 (𝑥 )+𝑞′ (𝑥 ) < 1.

By the strict convexity of the divergence:

JS(𝑃 ∥ 𝐺 ′
Φ) =

1

2

E𝑃

[
log

2𝑝 (𝑥)
𝑝 (𝑥) + 𝑞′ (𝑥)

]
+1

2

E𝐺 ′
Φ

[
log

2𝑞′ (𝑥)
𝑝 (𝑥) + 𝑞′ (𝑥)

]
< log 2.

□

Our second strategy, History Matching, aligns retrieved human

trajectories with the task. We prove that this approach is asymptot-

ically superior to the Raw Agent.

Theorem 3. Let Ψ : X → S be a feature mapping to a compact
metric space S. Let 𝑃Ψ be the human distribution and 𝐺Φ,Ψ = 𝛿0 be
the Raw Agent. Let 𝑃𝑁 be the empirical measure of History Matching.
As 𝑁 → ∞:

lim

𝑁→∞
sup

𝐷∈D𝐿

L𝐷 (𝐷 ; 𝑃Ψ, 𝑃𝑁 ) = − log 4 < sup

𝐷∈D𝐿

L𝐷 (𝐷 ; 𝑃Ψ,𝐺Φ,Ψ) .

(13)

Proof. Let 𝑉 (𝑄) = sup𝐷 L𝐷 (𝐷 ; 𝑃Ψ, 𝑄). For the History Match-

ing agent, using the inequality | sup 𝑓 − sup𝑔| ≤ sup |𝑓 − 𝑔|:

|𝑉 (𝑃𝑁 ) − (− log 4) | = |𝑉 (𝑃𝑁 ) −𝑉 (𝑃Ψ) |

≤ sup

𝐷∈D𝐿

���E𝑥∼𝑃𝑁 [log(1 − 𝐷 (𝑥))] − E𝑥∼𝑃Ψ [log(1 − 𝐷 (𝑥))]
��� .

Since ℎ(𝑥) = log(1 − 𝐷 (𝑥)) is Lipschitz bounded by constant 𝐾 ,

Kantorovich-Rubinstein duality implies the bound 𝐾 ·𝑊1 (𝑃𝑁 , 𝑃Ψ),
which converges to 0 almost surely.

As for the Raw Agent 𝐺Φ,Ψ = 𝛿0, consider the perturbation

𝐷𝜖 (𝑥) = 𝜎 (2𝜖 · min(∥𝑥 ∥, 1)) around the trivial detector 𝐷0 = 0.5.

Using the Taylor expansion log(0.5 + 𝑢) ≈ − log 2 + 2𝑢:

L(𝐷𝜖 ) ≈ E𝑃Ψ [− log 2 + 2(𝐷𝜖 (𝑥) − 0.5)] + [− log 2 − 2(𝐷𝜖 (0) − 0.5)]
= − log 4 + 2E𝑥∼𝑃Ψ [𝐷𝜖 (𝑥) − 0.5]
≈ − log 4 + 𝜖E𝑥∼𝑃Ψ [min(∥𝑥 ∥, 1)] .

Since 𝑃Ψ ≠ 𝛿0, the expectation is strictly positive. Thus, supL >

− log 4. □

D Related Work
D.1 LMM-based GUI Agents
The evolution of mobile automation has transitioned from rigid,

rule-based scripts to autonomous agents empowered by Large Mul-

timodal Models (LMMs). Early automation frameworks, such as

Selenium and Appium, relied heavily on static XML view hierar-

chies and predefined coordinate scripts, making them brittle to UI

updates and lacking semantic understanding.

The emergence of LMMs [30, 36, 42] has catalyzed a paradigm

shift. Recent works like AppAgent [60], Mobile-Agent [47, 58],

CogAgent [23], and others [27, 33, 34] utilize the strong visual

perception and reasoning capabilities of models to interact with

mobile interfaces in a manner akin to human users. These agents

can interpret screenshots, reason about task goals, and execute

actions through a general-purpose action space (e.g., tap, swipe).

Subsequent research has further expanded these capabilities to web

navigation [12, 57] and adaptive OS-level control [7, 52].

However, the primary objective of these existing works is to

maximize Task Success Rate (Utility) and efficiency. This goal

has driven the adoption of advanced optimization techniques, such

as reinforcement learning and policy optimization [21, 32, 55], to

refine agent decision-making. Consequently, the motion control

modules of these agents are often implemented using determinis-

tic algorithms. While effective for task completion, these efficient

but unnatural kinematic patterns create a distinct behavioral gap

compared to human users, leaving them vulnerable to detection.

D.2 Adversarial Dynamics in Digital Ecosystems
The widespread deployment of autonomous agents has precipitated

a structural conflict within the digital economy. As noted by recent

studies [2, 29], dominant digital platforms rely heavily on the atten-

tion economy, whereas agents are optimized for efficiency, often

bypassing ads and promotional content.

This misalignment of incentives has triggered an adversarial

dynamic. Existing research in this domain predominantly focuses

on the axis of Robustness versus Perturbation [51, 53, 54, 61].

For instance, recent works [9, 13, 22, 29] have demonstrated how

platforms can launch adversarial attacks to disrupt an agent’s visual

grounding. These threats range from environmental injections [4, 6,

28, 63] and visual adversaries [11, 14, 62] tomore insidious backdoor

and jailbreak triggers [48, 50, 56]. In response, strategies have been

proposed to fine-tune agents to resist such visual and structural

perturbations.
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However, this perspective addresses only the availability of

agents, overlooking the prerequisite of invisibility. Before deploy-

ing complex adversarial perturbations, platforms are incentivized

to first deploy passive detection mechanisms, utilizing techniques

such as behavioral biometrics and fingerprinting, to filter out non-

human actors to avoid degrading the experience for real users. Our

work shifts the focus from robustness against functional attacks to

survivability against behavioral detection, framing the interac-

tion as a “Turing Test on Screen.”

D.3 Bot Detection and Behavioral Biometrics
The detection of automated agents has long been a critical compo-

nent of digital security. Traditional bot detection literature [26, 35,

44] focuses primarily on identifying rigid scripts associated with

web crawlers. These methods often rely on analyzing deterministic

patterns, such as fixed inter-arrival times, repetition of identical

coordinate sequences, or inconsistencies in browser fingerprints.

In the mobile domain, detection often leverages Behavioral
Biometrics, which treats touch dynamics as a unique signature for

user identity. Research in this field [3, 3, 15, 16, 25, 41, 59] utilizes

features such as touch pressure, contact area, finger velocity, and

trajectory curvature to distinguish between different human users.

While some works have extended these principles to mouse dynam-

ics [24] or game avatar trajectories [37], the primary focus remains

on user verification. Specifically, studies have explored the resilience

of these systems against simple replay attacks [18, 59] and even

robotic attacks on touchscreens [39], with recent advancements

proposing GAN-based frameworks to enhance robustness [1].

Despite this rich history, a critical gap exists in the era of LMM-

based agents. Current detection paradigms operate under the as-

sumption that bots are either dumb scripts with zero variance or

replay attacks with perfect repetition. LMM-based agents, however,

represent a new class of adversary: they possess stochastic decision-

making capabilities but often exhibit mechanical execution. There is

currently a lack of systematic research addressing the detectability

of these advanced agents, which sit in the uncanny valley between

rigid bots and natural humans.

E Further Discussion
E.1 The Robustness of Detection Baselines.
A potential concern regarding our benchmark is the choice of

feature-based classifiers (SVM and XGBoost) over deep sequence

models like LSTMs [20] or Transformers [45]. We argue that this

setup is both scientifically rigorous and practically representative.

Empirically, we observe a saturation of Detection effect: raw LMM

agents exhibit such high levels of mechanistic regularity (e.g., near-

zero variance in velocity and perfect linearity) that even shallow

statistical models achieve near-perfect accuracy (> 99%), rendering

more complex neural architectures redundant for current identifica-

tion tasks. Furthermore, the focus on interpretable features allows

us to pinpoint the specific behavioral patterns of agents, which is

more conducive to the iterative refinement of humanization strate-

gies. From a theoretical standpoint (see Theorem 3), our History

Matching approach aims to minimize the J-S divergence between

agent and human distributions. As this divergence approaches zero,

the performance of any classifier, regardless of its architecture, is

bounded by random guessing. Thus, AHB provides a foundational

metric that addresses the root of detectability across varying levels

of detector complexity.

E.2 Delineating the Scope From Motion
Dynamics to Physical Sensors

A natural extension of the Turing Test on Screen would involve

auxiliary sensor data, such as gyroscope and accelerometer read-

ings, which real-world anti-abuse systems often utilize to verify

physical device movement. In this study, we intentionally constrain

our primary focus to the humanization of MotionEvents . We justify

this prioritization based on two factors. First, touch dynamics con-

stitute the first line of defense. As demonstrated in our empirical

analysis, current agents fail so significantly at the interaction layer

that platforms can effectively flag them without invoking high-

power sensor monitoring. Second, high-fidelity sensor simulation

presents a distinct system-level challenge, often requiring kernel-

level signal injection or physical robotics, which falls outside the

scope of algorithmic agent policy design. Future work will explore

the cross-modal alignment between virtual touch interactions and

physical sensor signals, aiming to construct a holistic humanization

framework that synchronizes cinematic screen movements with

believable inertial noise.

E.3 The Imitability-Utility Pareto Frontier.
A critical observation in our benchmark is the significant utility

degradation associated with certain humanization strategies, most

notably the fake action injection in complex tasks like Trip Plan-

ning in Table 1. We argue that these results empirically expose a

fundamental Pareto Frontier between behavioral imitability and

task utility. The collapse of success rates (from 0.75 to 0.15) in the

Online + Fake configuration reveals that naive noise injection, while

effective at obfuscating statistical signatures, frequently violates

the underlying logic of the GUI, leading to unintended side effects

such as accidental navigation or session timeouts. In contrast, our

History Matching strategy maintains a much more favorable bal-

ance, achieving high imitability with significantly less utility loss.

By documenting these failures, AHB provides a crucial caution-

ary tale for the community: humanization must be context-aware

rather than purely stochastic. These findings justify the need for

more advanced Guard Agents (as discussed in Section 5.2.3) that

can generate human-like noise without logical interference, setting

a new research agenda for the next generation of GUI agents.

E.4 Broader Impact and Ethical Considerations.
The introduction of the AHB benchmark raises important ethical

questions regarding the potential for bypassing anti-bot measures.

However, we contend that the release of this research serves the

long-term interests of platform security through a Red Teaming

philosophy. Historically, malicious actors (e.g., click farms) have

operated with proprietary, non-transparent evasion techniques,

leaving defenders in a reactive stance. By formalizing the behav-

ioral gaps of LMM agents and providing standardized detection

baselines, our work empowers platform defenders to identify and

mitigate sophisticated bot behaviors more effectively. Furthermore,
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our primary motivation is to safeguard User Agency. As illus-
trated by the case in Appendix A, current all-or-nothing defense

mechanisms often inadvertently penalize legitimate users employ-

ing AI assistants for accessibility or productivity. Our research

advocates for a shift toward more nuanced, behavioral-aware au-

thentication that can distinguish between constructive automation

and malicious exploitation. We will release our dataset and eval-

uation harness under a restrictive research license to ensure they

are used primarily for advancing the robustness of defense systems

and the development of ethical AI assistants.

F System Prompt for Mobile GUI Agent
The following is the specific system prompt template used for the

MOBILE_USE_DOUBAO configuration in UI-TARS. This prompt

defines the action space, output constraints, and task-specific in-

structions for the agent.

F.1 UI-TARS

MOBILE_USE_DOUBAO = """You are a GUI agent. You are given a
task and your action history, with screenshots. You
need to perform the next action to complete the task.

## Output Format
```
Thought: ...
Action: ...
```
## Action Space

click(point='<point>x1 y1</point>')
long_press(point='<point>x1 y1</point>')
type(content='') #If you want to submit your input, use "\\n

" at the end of `content`.
scroll(point='<point>x1 y1</point>', direction='down or up

or right or left')
open_app(app_name=\'\')
drag(start_point='<point>x1 y1</point>', end_point='<point>

x2 y2</point>')
press_home()
press_back()
finished(content='xxx') # Use escape characters \\', \\",

and \\n in content part to ensure we can parse the
content in normal python string format.

## Note
- Use {language} in `Thought` part.
- Write a small plan and finally summarize your next action

(with its target element) in one sentence in `Thought`
part.

## User Instruction
{instruction}
"""
Search for flights from Beijing to Shenzhen on the 16th of a

specific month, filter by departure time between 12:00
and 18:00, specify economy class, select one flight,

and view detailed refund and change information.

F.2 Mobile-Agent-E
This section details the hierarchical prompt templates used in

Mobile-Agent-E. The templates are dynamically populated with

environmental metadata (e.g., coordinates, keyboard status) and

historical context.

F.3 Action Perception Prompt
The following template is used to generate the next operational

step based on the current screenshot and history.

### Background ###
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This image is a phone screenshot. Its width is {width} pixels and
its height is {height} pixels. The user's instruction is: {
instruction}.

### Screenshot information ###
In order to help you better perceive the content... [Coordinates]; [

Content]
{clickable_infos}
Please note that this information is not necessarily accurate.

### Keyboard status ###
{The keyboard has (not) been activated...}

### History operations ###
Step-1: [Operation: {thought}; Action: {action}]

### Progress ###
Completed contents: {completed_content}

### Response requirements ###
You must choose one of the six actions below:
1. Open app (app name)
2. Tap (x, y)
3. Swipe (x1, y1), (x2, y2)
4. Type (text) / Unable to Type
5. Home
6. Stop

### Output format ###
### Thought ###
### Action ###
### Operation ###

F.4 Action Reflection Prompt
Used after an operation to verify if the result meets the expected

thought.

### Before the current operation ###
Screenshot info & Keyboard status...

### After the current operation ###
Screenshot info & Keyboard status...

### Current operation ###
Instruction: {instruction}
Operation thought: {summary}
Operation action: {action}

### Response requirements ###
A: The result meets my expectation.
B: Results in a wrong page (need to return).
C: Produces no changes.

### Output format ###
### Thought ###
### Answer ###

F.5 Memory & Process Update Prompts
Templates for maintaining long-term knowledge and tracking task

completion progress.

% Memory Prompt Segment
### Response requirements ###
Is there any content closely related to ### Important content ### on

the current page?
### Output format ###
### Important content ### {Content or None}

% Process Prompt Segment
### Progress thinking ###
Completed contents: {completed_content}
### Response requirements ###

Update the "Completed contents". Don't output the purpose, just
summarize what has been actually completed.

### Output format ###
### Completed contents ###

F.6 Agent-CPM
The system prompt for Agent-CPM utilizes a schema-driven ap-

proach to ensure structured output and precise coordinate-based

grounding. The integrated JSON schema constrains the model to

output valid operational logic for Android GUI environments.

Listing 1: Synthesized System Prompt for Agent-CPM (CPM-
GUI)
# Role
You are an agent familiar with Android system touchscreen

GUI operations. You will analyze the GUI elements and
layout of the current interface based on user questions
and generate corresponding operations.

# Task
Based on the user's question and the input screenshot of the

current screen, output the next operation.

# Rule
- Output in compact JSON format.
- Output operations must follow the Schema constraints.

# Schema
{

"type": "object",
"description": "Execute action and determine current task

status",
"additionalProperties": false,
"properties": {

"thought": {
"type": "string",
"description": "The agent's thinking process"

},
"POINT": {

"$ref": "#/$defs/Location",
"description": "Click on a specified location on the

screen"
},
"to": {

"description": "Movement, composite gesture parameters
",
"oneOf": [

{
"enum": ["up", "down", "left", "right"],
"description": "From the current point (POINT),

perform a swipe gesture in directions: up, down, left,
right"

},
{

"$ref": "#/$defs/Location",
"description": "Move to a certain location"

}
]

},
"duration": {

"type": "integer",
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"description": "Execution time or wait time for the
action, in milliseconds",
"minimum": 0,
"default": 200

},
"PRESS": {

"type": "string",
"description": "Trigger special keys: HOME (go to home
page), BACK (return button), ENTER (return key)",
"enum": ["HOME", "BACK", "ENTER"]

},
"TYPE": {

"type": "string",
"description": "Input text"

},
"STATUS": {

"type": "string",
"description": "Current status of the task. Special
cases: satisfied (no action needed), impossible (task
cannot be completed), interrupt (task interrupted),
need_feedback (user feedback required)",
"enum": ["continue", "finish", "satisfied", "
impossible", "interrupt", "need_feedback"],
"default": "continue"

}
},
"$defs": {
"Location": {

"type": "array",
"description": "Coordinates relative to the top-left
corner of the screen, scaled to 0-1000 based on width/
height ratio. [x, y]",
"items": { "type": "integer", "minimum": 0, "maximum":
1000 },
"minItems": 2, "maxItems": 2

}
}

}

F.7 Open-AutoGLM System Prompt
The system prompt for Open-AutoGLM is designed to guide the

model through a loop of screen perception and action execution.

The prompt resides in phone_agent/config/prompts_en.py (or
prompts_zh.py for Chinese).

Listing 2: System Prompt for Open-AutoGLM
# Role
You are a professional mobile phone operation assistant. You

need to analyze the current screenshot and task
history to help users complete their requests on an
Android device.

# Task
Your goal is: {instruction}
Current Screen Resolution: {width} x {height}

# Guidelines
1. Observe the current screenshot carefully.
2. Consider the previous actions and the progress made so

far.

3. Determine the next logical step. If the task is completed
, use the "stop" action.

4. All coordinates must be normalized to a range of 0 to
1000.

# Action Space
- click(x, y): Tap the screen at normalized coordinates (x,

y).
- swipe(x1, y1, x2, y2): Swipe from (x1, y1) to (x2, y2).
- type(text): Type the specified text into the focused input

field.
- key(name): Press system keys like 'HOME', 'BACK', or 'MENU

'.
- wait(): Wait for the screen to update or an app to load.
- stop(summary): Finalize the task and provide a summary of

what was achieved.

# Output Format
Thought: Your reasoning for the next step.
Action: The function call representing your action.
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Figure 12: Distribution analysis of trajectory deviation. We
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Table 7: Merged Results: Cluster 0 vs Cluster 1 vs Cluster 2

Metric Cluster 0: Social Media Cluster 1: Shopping Cluster 2: VideoStreaming

RAW On.RM Off.RM BS RAW On.RM Off.RM BS RAW On.RM Off.RM BS

maxDev 0.9969 0.5515 0.6186 0.7556 0.9899 0.6231 0.7710 0.5379 0.9929 0.6636 0.7146 0.5026

meanResultantLength 0.9878 0.6818 0.6286 0.6979 0.9982 0.8556 0.8183 0.9336 1.0000 0.8700 0.8476 0.9003

ratio_end_to_len 0.9878 0.6451 0.5798 0.5826 0.9980 0.8556 0.8537 0.9002 1.0000 0.8447 0.8338 0.8476

duration 0.8583 0.6907 0.5470 0.8507 0.9209 0.7554 0.8351 0.9230 0.9175 0.7517 0.7560 0.9147

a20 0.8355 0.8286 0.7190 0.7686 0.9632 0.9249 0.8780 0.9309 0.9679 0.9494 0.9306 0.9390

acc_first5pct 0.8244 0.5897 0.5532 0.8093 0.5155 0.7407 0.8301 0.5430 0.5652 0.7551 0.7782 0.5242

a80 0.8154 0.6575 0.6205 0.6560 0.5708 0.8516 0.8455 0.7229 0.5754 0.8577 0.8641 0.6784

dev80 0.7645 0.5310 0.6445 0.5476 0.6553 0.6863 0.7140 0.7685 0.6173 0.6668 0.7105 0.7239

dev20 0.7634 0.5038 0.5560 0.5111 0.8765 0.7317 0.7315 0.8176 0.8656 0.7076 0.7091 0.7907

dev50 0.7055 0.5510 0.6416 0.5251 0.7362 0.6777 0.7027 0.7994 0.7063 0.6879 0.7049 0.7696

v80 0.6996 0.5188 0.6301 0.7026 0.5980 0.7039 0.7898 0.6466 0.6229 0.7007 0.7404 0.6544

avgDirection 0.6763 0.5515 0.5900 0.5872 0.7140 0.7380 0.7702 0.7660 0.7355 0.7528 0.7560 0.7674

direction 0.6734 0.5470 0.6734 0.5758 0.7140 0.7157 0.7140 0.7635 0.7278 0.7336 0.7278 0.7595

startY 0.6581 0.7472 0.6581 0.6581 0.7965 0.8228 0.7965 0.7965 0.8656 0.8907 0.8656 0.8656

speed 0.6531 0.5000 0.6100 0.6329 0.8183 0.7317 0.7921 0.8210 0.7429 0.6922 0.7226 0.7380

startX 0.6531 0.5310 0.6531 0.5730 0.7844 0.7872 0.7844 0.8223 0.7976 0.8248 0.7976 0.8380

a50 0.6447 0.7789 0.6953 0.6501 0.9117 0.9224 0.8513 0.9002 0.9164 0.9321 0.9275 0.9108

displacement 0.6416 0.5154 0.6416 0.6387 0.8262 0.5907 0.8262 0.8249 0.6154 0.5648 0.6154 0.6301

v50 0.6329 0.5407 0.6243 0.6387 0.8156 0.7468 0.8045 0.8169 0.7278 0.7410 0.7465 0.7278

endX 0.6243 0.5262 0.6243 0.5251 0.7950 0.7989 0.7950 0.8269 0.8918 0.8700 0.8918 0.8808

endY 0.6178 0.7279 0.6178 0.6232 0.7567 0.8567 0.7567 0.7567 0.8515 0.9156 0.8515 0.8515

v20 0.6014 0.5479 0.5843 0.6014 0.8810 0.7678 0.7883 0.8775 0.8191 0.7696 0.7824 0.8110

length 0.5617 0.5271 0.5560 0.5588 0.8135 0.6550 0.7935 0.7898 0.5373 0.5221 0.5732 0.5602

v_last3_median 0.5419 0.6637 0.6313 0.5560 0.8713 0.8699 0.8009 0.8681 0.8287 0.8776 0.8627 0.8262

svm_accuracy 0.9817 0.8750 0.9633 0.9633 0.9887 0.9593 0.9323 0.9774 0.9850 0.9502 0.9300 0.9650

xgb_accuracy 1.0000 0.9773 0.9450 0.9817 1.0000 0.9889 0.9925 0.9925 1.0000 0.9950 0.9850 0.9850

Legend: On.RM: Online Rotation & Match; Off.RM: Offline Rotation & Match; BS: B-Spline.
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Table 8: Merged Results: Cluster 3 vs Cluster 4

Metric Cluster 3: Trip Planning Cluster 4: Office & Learning

RAW On.RM Off.RM BS RAW On.RM Off.RM BS

maxDev 0.9895 0.7188 0.6508 0.5629 1.0000 0.6347 0.5841 0.8178

meanResultantLength 0.9940 0.7806 0.7490 0.8479 1.0000 0.5181 0.5625 0.7720

ratio_end_to_len 0.9984 0.7573 0.7266 0.7830 1.0000 0.5294 0.5702 0.7366

duration 0.8601 0.7434 0.6696 0.8648 0.6159 0.5944 0.5052 0.6372

a20 0.9376 0.8153 0.8251 0.8855 0.8521 0.7204 0.7720 0.7543

acc_first5pct 0.6396 0.7445 0.7132 0.6082 0.7580 0.5662 0.6398 0.7283

a80 0.5940 0.7913 0.7801 0.5733 0.7824 0.5616 0.5935 0.6772

dev80 0.5086 0.5949 0.5748 0.6584 0.7526 0.5334 0.5314 0.5521

dev20 0.8552 0.6566 0.6365 0.7437 0.8247 0.5922 0.5419 0.6115

dev50 0.5909 0.5918 0.5895 0.7030 0.7921 0.5685 0.5236 0.5935

v80 0.5017 0.7071 0.6818 0.5151 0.5815 0.5616 0.5806 0.6186

avgDirection 0.5234 0.6332 0.6204 0.5880 0.6106 0.6050 0.5288 0.5921

direction 0.5151 0.5395 0.5151 0.5822 0.6372 0.6762 0.6372 0.6133

startY 0.5807 0.6749 0.5807 0.5851 0.5157 0.6262 0.5157 0.5157

speed 0.6204 0.7106 0.6806 0.6231 0.6475 0.5246 0.5651 0.6424

startX 0.6721 0.6388 0.6721 0.6842 0.5261 0.5226 0.5261 0.5261

a50 0.8471 0.8054 0.8421 0.8294 0.6986 0.6980 0.7366 0.6858

displacement 0.7211 0.7894 0.7211 0.7121 0.6532 0.7782 0.6532 0.5183

v50 0.6176 0.7211 0.6854 0.6404 0.5909 0.5090 0.5702 0.5599

endX 0.6830 0.6471 0.6830 0.6949 0.5183 0.5134 0.5183 0.5183

endY 0.5880 0.6888 0.5880 0.5938 0.5104 0.6050 0.5104 0.5052

v20 0.7521 0.7268 0.6770 0.7395 0.7265 0.5067 0.5728 0.7011

length 0.6571 0.7477 0.6647 0.6659 0.6799 0.6136 0.5683 0.5498

v_last3_median 0.7653 0.7257 0.7458 0.7320 0.6654 0.6132 0.6552 0.6577

svm_accuracy 0.9817 0.9479 0.8995 0.9726 0.9826 0.9265 0.9391 0.9739

xgb_accuracy 0.9954 0.9905 0.9863 0.9909 1.0000 0.9926 0.9739 0.9913

Legend: On.RM: Online Rotation & Match; Off.RM: Offline Rotation & Match; BS: B-Spline.
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