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Abstract

The rise of autonomous GUI agents has triggered adversarial coun-
termeasures from digital platforms, yet existing research prioritizes
utility and robustness over the critical dimension of anti-detection.
We argue that for agents to survive in human-centric ecosystems,
they must evolve Humanization capabilities. We introduce the “Tur-
ing Test on Screen,” formally modeling the interaction as a MinMax
optimization problem between a detector and an agent aiming to
minimize behavioral divergence. We then collect a new high-fidelity
dataset of mobile touch dynamics, and conduct our analysis that
vanilla LMM-based agents are easily detectable due to unnatural
kinematics. Consequently, we establish the Agent Humanization
Benchmark (AHB) and detection metrics to quantify the trade-off
between imitability and utility. Finally, we propose methods ranging
from heuristic noise to data-driven behavioral matching, demon-
strating that agents can achieve high imitability theoretically and
empirically without sacrificing performance. This work shifts the
paradigm from whether an agent can perform a task to how it per-
forms it within a human-centric ecosystem, laying the groundwork
for seamless coexistence in adversarial digital environments.
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1 Introduction

The advent of Large Multimodal Models (LMM:s) [30, 36, 42] has
fundamentally reshaped the landscape of human-mobile interaction.
By empowering systems to perceive visual interfaces and execute
complex interactions, we are witnessing a paradigm shift from static
scripts to autonomous Graphical User Interface (GUI) Agents [23,
47, 60]. These agents possess the capability to navigate mobile
applications, process visual information, and execute tasks on behalf
of users, promising a future where digital labor is significantly
offloaded to Al [12, 57].

However, the widespread deployment of GUI Agents precipi-
tates a conflict of interest between users and service providers,
potentially triggering an adversarial dynamic between autonomous
agents and digital platforms [2, 29]. As is shown in Figure 1, modern
digital ecosystems rely heavily on the attention economy, where
user engagement and advertisement impressions are the primary
revenue drivers. In contrast, GUI Agents are usually optimized
for efficiency and targeted for goals, bypassing promotional con-
tent and streamlining interaction paths. This behavior poses an
existential threat to the business models of incumbent platforms.

This adversarial interest compels platforms to deploy Platform
Defenses. These defenses may range from service blocking to more
sophisticated adversarial interventions, such as injecting targeted
noise or deploy advertisement traps that conversely use agents to
achieve revenue goals. As a result, these indiscriminate defenses
introduce severe User Experience Risks, such as login failures or
environments full of noise for real users. A representative example
of this conflict is the recent Doubao Mobile Assistant incident, where
the agent’s attempt to automate cross-application tasks triggered
severe security protocols from superplatforms, such as Wechat,
resulting in widespread account restrictions and service blockings.
See Appendix A for details.

Despite these defensive realities, the academic community re-
mains largely fixated on an “Attack vs. Anti-Attack” paradigm.
Existing research predominantly focuses on two axes: (1) enhanc-
ing task utility, and (2) improving agent robustness against active
platform perturbations (i.e., Anti-Attack). However, this perspec-
tive overlooks the prerequisite “Detect vs. Anti-Detect” paradigm.
Detection acts as the gatekeeper: given the potential risks to user ex-
perience, platforms will inevitably prioritize distinguishing agents
from humans to filter traffic before deploying any indiscriminate at-
tacks. Consequently, to achieve a harmonious coexistence with the
ecosystem, agents must evolve beyond mere robustness to possess
anti-detection capabilities, specifically Humanization.

To bridge this gap, we formally define the problem of Agent
Humanization and systematically investigate the adversarial dy-
namics between detection and anti-detection in the era of GUI
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Figure 1: The adversarial landscape between GUI Agents and Mobile Platforms. The figure illustrates three key stages: (1)
Main Conflicts: Adversarial interests lead platforms to deploy defenses such as login blocks and ad traps. (2) Turing Test on
Screen: The core detection mechanism relies on distinguishing natural human trajectories from agent trajectories. (3) Agent
Humanization: We propose an adversarial humanization task to transform raw agents into humanized agents by increasing
their imitability to bypass detection while maintaining task accuracy.

agents. We extend the Turing Test [43] to the field of GUI Agents
and introduce the concept of “Turing Test on Screen”. Unlike
the classical Turing Test, which evaluates human-like intelligence
through textual dialogue, our paradigm evaluates human-like be-
havior through touch and sensor events on mobile interfaces. This
draws inspiration from behavioral biometrics, where touch dynam-
ics are traditionally used for user authentication [3, 17, 59]. In this
context, the interaction is considered as an adversarial game, which
is formulated as a MinMax optimization problem [19, 46] where
the Detector seeks to maximize the distinction between human
and agent behaviors, while the GUI Agent seeks to minimize this
distinction without decreasing task utility.

Guided by this formulation, we conduct a comprehensive study
to assess the current state of agent detectability. We collect a large-
scale dataset comprising detailed motion events such as touch co-
ordinates, velocity and sensor events from both human users and
a wide range of state-of-the-art GUI Agents. Our empirical anal-
ysis reveals that raw agents are highly susceptible to detection
due to unnatural kinematic features. Based on these findings, we
construct the Agent Humanization Benchmark (AHB) to evaluate
the trade-off between human-like imitability and task success
utility. Furthermore, we propose multiple humanization strategies
designed to evade detection, conducting both theoretical proofs
in Section 4.3 and Appendix C and empirical experiments in Sec-
tion 5 to prove their effectiveness, providing a roadmap for future
agent development.

The contributions of this paper are summarized as follows:

e We are the first to extend the Turing Test to the field of GUI
Agents and introduce the concept of “Turing Test on Screen”. We

formally define the adversarial paradigm between the Detector
and the GUI Agent, establishing a theoretical framework for
studying agent detectability in GUI environments.

e We construct a rich dataset containing granular MotionEvent
and SensorEvent sequences, enabling high-fidelity analysis of
behavioral differences between humans and GUI agents.

o We are the first to propose specific detection metrics and establish
the Agent Humanization Benchmark (AHB) to quantitatively
assess agent imitability and utility.

e We design and evaluate several humanity modules, ranging from
heuristic noise injection to data-driven history matching, which
improve agent imitability both theoretically and empirically. Our
code and data are publicly available at ! and 2.

Ultimately, this work underscores a pivotal transition in the evo-
lution of Al agents: moving beyond the question of whether an agent
can perform a task, to how it performs it within a human-centric
ecosystem. As the “Turing Test on Screen” becomes inevitable for
digital access, the ability to exhibit human-like behavioral nuances
is no longer merely an aesthetic feature but a functional neces-
sity for survival. By formalizing the interplay between detection
and humanization, we hope to lay the groundwork for a future
where autonomous agents can seamlessly coexist with existing
digital infrastructures, safeguarding user agency in an increasingly
adversarial online world.

Uhttps://github.com/Gebro13/Passing-the-Turing-Test-on-Screen-Agent-
Humanization-Benchmark
https://huggingface.co/datasets/lyyang2766/Passing-the-Turing-Test-on-Screen-
Agent-Humanization-Benchmark/tree/main
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2 Formulation of Turing Test on Screen

We formally define the Turing Test on Screen as a Min-Max
adversarial game [46] between two entities: a Detector Dg (the
platform) and a GUI Agent Gy (the operator). The detector aims
to maximize classification accuracy, while the agent minimizes
detection probability subject to task utility constraints.

2.1 Interaction Modeling

The interaction between the agent and the mobile OS occurs at two
distinct layers: the logical action level and the physical event level.
Agent-OS interaction is decoupled into two hierarchical layers:

Agent Level: At each step t, Gg generates a high-level UI com-
mand a; (e.g., tap, swipe) based on the environmental state s;:

ar =Go(st), Stx1 =T (st,ar) 1)

where 7~ denotes the state transition function.

Event Level: On a mobile phone, a single logical action a; is not a
simple data point; rather, it acts as a trigger that invokes multiple
underlying hardware sensors, generating a set of fine-grained
events E;. We define the event mapping function f : a — {e}
such that:

E: ={er1,er2, ..., erx} = flas) (2)

These events e € E; are categorized as: (1) Motion Events (M) rep-

resenting touch dynamics (coordinates, pressure); and (2) Sensor

Events (S) representing physical signals (gyroscope, magnetome-

ter).

Thus, e € M U S. The complete behavioral trace observed by the

system up to time T is the union of all triggered events: E;.r =
11 Er.

2.2 The Adversarial Game

The benchmark evaluates whether the event sequence & is distin-
guishable from human-generated patterns.

Detector’s Objective. Dg acts as a discriminator evaluating the
accumulated stream &;,;. For any action sequence, it outputs a
probability y; = De(&E1.) € [0, 1], where y; — 1 denotes a Human
classification and 0 denotes an agent. Dg maximizes its discrimina-
tion power:

max Lp =Eg-[log De(€)] +Eg-, [log(1 — De(&))] (3)

where H and Gg denote the event distributions of humans and
agents, respectively.

Agent’s Objective. Gy must optimize its parameters ® to balance
Imitability and Utility via a regularized minimization:

T
Hgn L6 =E,.s Z [(De(&1:4) < 7) = A+ Riask(Go) 4

t=1

where 7 is the detection threshold, I(+) is the indicator function, and
Riask represents the task success rate. The multiplier A governs the
trade-off, ensuring humanization does not compromise functional
capability. This framework provides the theoretical foundation for
the Agent Humanization Benchmark (AHB).

X Coordinate X Coordinate

00 200 400 600 800 1000 00 200 400 600 800 1000
( 2 woem ) ( 2 wem )
-Q <@

Face lotion aishopping Guide 4] Face lotion aishopping Guice L)
500y RS o= 500y CEEES o=

8 I L |E
© 1000 + ( © 1000 +
£ <
- Summer Fridays Ciud Dew Gel E oy Purty o mer Fricays Cious Dew Gel Phucsopny Purty
2 2
o 1) .
o o -
o o e T -
> >
241 e 241 7%
1500 == 1500
Factors to consider Factors to consider
Torgetares|| [ ingredient Stkin type ) | Targetares | | ingredient
scem || Textu sor || [ sensiwive scemt —

2000 2000

(a) Human Swipe

(b) Agent Swipe
Figure 2: The difference between human and agent swipe.
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Figure 3: The visualization of action interval and tap duration
differences between human and agents.

3 Data Collection and Preliminary Study

We first collect a large-scale data and make some preliminary stud-
ies. This stage focuses on understanding the behavioral signatures
of standard GUI agents compared to authentic human users.

3.1 Dataset Collection

Our dataset captures interactions across 21 diverse applications
categorized into five clusters (e.g., Social Media, Shopping, Trip
Planning; see Table 3 in Appendix). Data is collected from two
primary sources:

e Human Users: Four sub-populations (Young Man/Woman, Middle-
aged, and Elderly) to capture physiological and age-related be-
havioral variances.

e Autonomous Agents: Interactions generated by state-of-the-
art models including UI-TARS [38], MobileAgent-E (GPT-40) [49],
MobileAgent-E (Claude-3.5-Sonnet), AgentCPM [64], and Auto-
GLM [31].

Following [16], we derive 24 statistical features to capture
unique biomechanical signatures. These include Kinematics: e.g.
velocity, acceleration, Geometry: e.g. path efficiency, curvature, and
Temporal Dynamics: e.g. duration, latency. To quantify the relevance
of the feature and to prove its effectiveness for the detector, we
calculate the Information Gain (IG) [40] for each attribute relative
to the source identity U. See details in Table 6 and Figure 9 in
Appendix B. The strategic decision to focus on touch dynamics
rather than hardware sensor streams is justified in Appendix E.



3.2 Preliminary Qualitative Study

We conduct a preliminary study and demonstrate the differences
across two aspects, as follows:

3.2.1 Trajectory Linearity. As shown in Figure 2, agent trajectories
are typically rigid, linear vectors lacking the physiological arcs and
motor noise of human gestures.

3.2.2  Action Intervals. Human intervals follow a long-tailed distri-
bution peaking near zero, whereas agents suffer from significant
inference overhead. As shown in Figure 3a, ui-tars clusters at
5-10s, while mobile-agent-e reaches 50-80s. These delays are
sufficient for reliable detection.

3.2.3 Tap Duration. Human taps form a Gaussian distribution
(0.055-0.10s) due to skin elasticity, while agent inputs manifest as
near-zero spikes, reflecting instantaneous event injection.

In summary, vanilla agents fail the “Turing Test on Screen” due
to robotic linearity and non-human temporal rhythms, making it
trivial for a detector to identify.

4 The Agent Humanization Benchmark

To quantify humanization effectiveness, we introduce the Agent
Humanization Benchmark (AHB), a framework evaluating agents
across two axes: Imitability and Utility.

4.1 Evaluation Metrics

4.1.1 Imitability. Imitability measures the behavioral resemblance
between agents and humans, quantified inversely by the Classifica-
tion Accuracy (ACC) of various detection algorithms. A detector
ACC approaching 0.5 (random guessing) signifies that the agent has
successfully passed the “Turing Test on Screen” for that detection
modality.

4.1.2  Utility. Since humanization (e.g., noise, delays) may degrade
efficiency, we monitor the Task Success Rate to ensure function-
ality is preserved. An ideal strategy achieves high imitability with
minimal success rate degradation; strategies that bypass detection
but fail at tasks are considered unsuccessful.

4.2 The Hierarchy of Detectors

The AHB categorizes detectors (D) by action type and complexity,
ranging from simple heuristics to robust machine learning models
to assess agents against a defense hierarchy.

4.2.1 Rule-based Detectors. These serve as the first line of defense,
utilizing predefined statistical thresholds to identify anomalies in
individual attributes. Metrics include Swipe Accuracy, Time In-
terval Accuracy, and Tap Duration Accuracy. Together, they
filter out agents that fail to adhere to basic biological constraints.

4.2.2 Learning-based Detectors. To identify subtle, non-linear pat-
terns in trajectories, we employ SVM [8] and XGBoost [5] classifiers.
Trained on the 24-dimensional feature vector in Section 3, these
models capture complex correlations between features. Evading
these detectors requires the agent to mimic the holistic distribu-
tion of human behavior rather than just isolated features. A deeper
discussion on the robustness of these interpretable detectors is
provided in Appendix E.
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4.3 Humanization Methodologies

To bridge the gap between mechanical agent behavior and human-
like interaction, we propose two architectural paradigms for human-
ization: (1) Internal Injection, embedding human priors directly
into the LMM (e.g., via fine-tuning); and (2) External Wrapper,
a post-processing module H that transforms raw actions aay into
humanized sequences apyman before execution.

As a foundational study, we adopt the External Wrapper ap-
proach for its model-agnostic compatibility. We propose four dis-
tinct strategies, starting with heuristic signal processing.

4.3.1 Strategy 1: Heuristic Noise Injection (B-Spline). To counter-
act the perfect linearity of raw agent swipes, we utilize B-spline
smoothing [10]. Instead of a linear path, we generate a curve S(t)
based on control points C = {cy, . . ., ¢, } scattered normally around
the direct chord:

S(t) =D Nip(t) - ¢ 5)
i=0

where N; , () are B-spline basis functions of degree p. While compu-
tationally efficient and real-time capable, this method may remains
statistically distinguishable if the noise distribution does not pre-
cisely match human biomechanical curvature.

4.3.2  Strategy 2: Data-Driven History Matching. To achieve higher
fidelity, we leverage real human trajectories from our dataset. Given
a task vector Oy, we sample a reference trajectory Jre with similar
distance and direction, then apply an affine transformation to align
it. Each point p € Tt is transformed to p’ via:

p' =S- R(e) . (P - pref_start) + Pstart (6)

where R(0) is a rotation matrix based on the angular difference,
and s = ||0ask||/||Fret]| is the scaling factor.

This strategy preserves authentic velocity profiles and micro-
jitters, though it requires an offline database.

4.3.3 Theoretical Foundations. We provide formal proofs for three
theorems in Appendix C. Theorem 1 bounds a detector’s efficacy
by the Jensen-Shannon divergence between human and agent dis-
tributions. Theorem 2 proves that variance injection (e.g., B-spline)
strictly reduces this divergence. Finally, Theorem 3 demonstrates
that History Matching is asymptotically superior, as agent behavior
converges toward the true human distribution.

4.3.4 Strategy 3: Fake Actions. To mask the long inference latencies
identified in Section 3, the wrapper injects micro-interactions (e.g.,
slight scrolls or hovers) during idle periods. These non-functional
inputs break the long-tail interval distribution, shifting the agent’s
temporal profile toward continuous human-like interaction.

4.3.5 Strategy 4: Longer Presses. To humanize the near-zero tap
durations of raw agents, we sample durations from a Gaussian
distribution fitted to human tap data, ensuring touch events mimic
realistic physical contact.

5 Experiments & Analysis

In this section, we provide our whole detection and humanization
results, as well as in-depth feature analysis to find the easiest and
hardest feature to humanize.
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Table 1: Experiment results of humanization strategies across five distinct application domains. We compare the baseline
(RAW) against various combinations of humanization methods, including swipe trajectory adjustment (B-spline vs. History
Matching), interval noise injection (Fake), and tap duration adjustment (Long). The right block reports the detection accuracy
(lower is better) of different classifiers SVM and XGBoost and rule-based checks, alongside the final Task Accuracy.

Humanization Methods Detection Rules
Task Mode - - . . T
swipe interval  tap swipe interval tap utility
b-spline  history fake long maxsingle SVMacc XGBacc intacc  tap.acc task acc
RAW X X X X 0.9969 0.9817 1.0000 0.8838 0.9977 0.4833
online X v X v 0.8286 0.8750 0.9773 0.8798 0.6341 0.5625
online X v X X 0.7651 0.9756 1.0000 0.9060 0.9976 0.6667
online X v v v 0.9998 0.9963 0.9993 0.5999 0.6210 0.4500
Social Media Oﬁl?ne X v X X 0.7190 0.9633 0.9450 0.8838 0.9977 -
offline v X X X 0.8507 0.9633 0.9817 0.8838 0.9977 -
offline X X X v 1.0000 0.9773 1.0000 0.8798 0.6341 -
offline X X v X 0.9969 0.9817 1.0000 0.5274 0.9977 -
offline X v v v 0.8286 0.8750 0.9773 0.5260 0.6341 -
offline v X v v 0.8507 0.9633 0.9817 0.5274 0.6137 -
RAW X X X X 0.9982 0.9887 1.0000 0.9056 0.9840 0.8148
online X v X v 0.9249 0.9593 0.9889 0.8969 0.6133 0.7069
online X v X X 0.9769 0.9570 0.9785 0.9196 0.9971 0.9500
online X v v v 0.9989 0.9962 0.9986 0.5718 0.6278 0.6000
Shopping oﬂline X v X X 0.8780 0.9323 0.9925 0.9056 0.9840 -
offline v X X X 0.9336 0.9774 0.9925 0.9056 0.9840 -
offline X X X v 1.0000 0.9778 1.0000 0.8969 0.6133 -
offline X X v X 0.9982 0.9887 1.0000 0.5089 0.9840 -
offline X v v v 0.9249 0.9593 0.9889 0.5104 0.6133 -
offline v X v v 0.9336 0.9774 0.9925 0.5089 0.6105 -
RAW X X X X 1.0000 0.9850 1.0000 0.9186 0.9956 0.6094
online X v X v 0.9494 0.9502 0.9950 0.9120 0.6186 0.8393
online X v X X 0.9929 0.9942 0.9770 0.9112 0.9990 0.7500
online X v v v 0.9993 0.9968 0.9974 0.5621 0.6276 0.7500
Video Streaming ofﬂ?ne X v X X 0.9306 0.9300 0.9850 0.9186 0.9956 -
offline v X X X 0.9390 0.9650 0.9850 0.9186 0.9956 -
offline X X X v 1.0000 0.9950 1.0000 0.9120 0.6186 -
offline X X v X 1.0000 0.9850 1.0000 0.5195 0.9956 -
offline X v v v 0.9494 0.9502 0.9950 0.5196 0.6186 -
offline v X v v 0.9390 0.9650 0.9850 0.5195 0.6129 -
RAW X X X X 0.9984 0.9817 0.9954 0.7998 0.9954 0.7500
online X v X v 0.8153 0.9479 0.9905 0.8047 0.6264 0.7143
online X v X X 0.8721 0.9278 0.9896 0.8640 0.9981 0.7000
online X v v v 0.9992 0.9945 0.9989 0.5011 0.6110 0.1500
Trip Planning oﬂl%ne X v X X 0.8421 0.8995 0.9863 0.7998 0.9954 -
offline v X X X 0.8855 0.9726 0.9909 0.7998 0.9954 -
offline X X X v 0.9970 0.9953 1.0000 0.8047 0.6264 -
offline X X v X 0.9984 0.9817 0.9954 0.5718 0.9954 -
offline X v v v 0.8153 0.9479 0.9905 0.5704 0.6264 -
offline v X v v 0.8855 0.9726 0.9909 0.5718 0.6089 -
RAW X X X X 1.0000 0.9826 1.0000 0.8744 0.9974 0.5750
online X v X v 0.7782 0.9265 0.9926 0.8803 0.6263 0.5167
online X v X X 0.9446 0.9571 1.0000 0.8967 0.9988 0.5375
online X v v v 0.9997 0.9953 0.9989 0.5606 0.6177 0.2875
Office & Learning Ofﬂ%ne X v X X 0.7720 0.9391 0.9739 0.8744 0.9974 -
offline v X X X 0.8178 0.9739 0.9913 0.8744 0.9974 -
offline X X X v 1.0000 0.9926 0.9926 0.8803 0.6263 -
offline X X v X 1.0000 0.9826 1.0000 0.5183 0.9974 -
offline X v v v 0.7782 0.9265 0.9926 0.5182 0.6263 -
offline v X v v 0.8178 0.9739 0.9913 0.5183 0.6134 -




5.1 Comprehensive Results of Humanization

5.1.1 Baseline Vulnerability Analysis. Results in Table 1 confirm
the high detectability of non-humanized agents. Across all clusters,
the XGBoost and SVM classifiers achieve near-perfect accuracy
(e.g., 0.995 and 0.98), demonstrating that raw agent trajectories
contain distinct mechanical patterns that are trivial for ML models
to identify.

5.1.2  Experimental Settings. We implement four humanization
strategies targeting distinct dimensions:

e Swipe: B-spline Noise and History Matching serve as mutually
exclusive trajectory generation methods.

e Tap & Interval: Long Press (tap duration) and Fake Action (tem-
poral intervals) can be superimposed on any swipe strategy.

Evaluations are conducted in online mode: real-time execution;
measures task success and offline mode: post-hoc modification;
isolates detection evasion from static utility.

5.1.3  Main Results. Results in Table 3 reveal a clear performance
hierarchy: History Matching consistently outperforms B-spline Noise.
In Cluster 0, History Matching achieves a significantly lower de-
tection score (0.7190 vs. 0.8507) and reduces XGBoost accuracy to
0.9450, compared to B-spline’s 0.9817. This confirms that adapt-
ing empirical human data provides a more robust defense
than synthetic smoothing.

Fake Action decisively neutralizes interval-based rules, reducing
accuracy to ~0.52 (near random guessing). However, this intro-
duces a trade-off: while enhancing imitability, non-functional
steps may disrupt task flow and degrade online utility. Mean-
while, Long Press effectively bypasses tap-duration heuristics, re-
ducing detection accuracy in Cluster 1 from 0.9840 to 0.6133 by
simply matching human duration distributions.

Contrary to a simple modular “plug-and-play” assump-
tion, our results reveal a complex interplay between strate-
gies. While Fake Action successfully neutralizes interval-based
rules, the second and fourth rows of the online results in Table 1
shows that its injection of fixed, repetitive motions can actually in-
crease the overall detectability of the trajectory. This suggests that
naive fake action injection lacks orthogonality; by introducing pre-
dictable mechanical artifacts, it facilitates detection in other feature
dimensions. Consequently, achieving comprehensive imitability re-
quires a more nuanced synchronization between temporal masking
and trajectory generation to ensure that humanizing one dimension
does not inadvertently compromise another.

5.2 In-Depth Feature Analysis

Table 2 evaluates the baseline (RAW) against three humanization
strategies using an optimal ROC thresholding approach. Detection
accuracy serves as the primary metric, where 1.0 indicates per-
fect distinguishability and 0.5 signifies successful humanization.
To identify the limits of these strategies, we rank 24 behavioral
features by their resistance to masking. As shown in Figure 4, while
certain attributes are easily humanized, others remain persistent
bottlenecks tied to the fundamental architecture of GUI agents.
Detailed results are available in Appendix G.
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Table 2: Comparison of single-feature and model-based de-
tection accuracy for Social Media. Results show the classifi-
cation accuracy for the Raw baseline versus Online Rotation
& Match (On.RM), Offline Rotation & Match (Off.RM), and
B-Spline (BS) methods. Features are ranked by their discrim-
inative power on the raw dataset.

Metric RAW On.RM Off RM BS

maxDev 0.9969 0.5515 0.6186 0.7556
meanResultantLength 0.9878 0.6818  0.6286 0.6979
ratio_end_to_len 0.9878 0.6451 0.5798 0.5826
duration 0.8583 0.6907 0.5470 0.8507
a20 0.8355 0.8286  0.7190 0.7686
acc_first5pct 0.8244 0.5897  0.5532 0.8093
a80 0.8154 0.6575 0.6205 0.6560
dev80 0.7645 0.5310 0.6445 0.5476
dev20 0.7634 0.5038 0.5560 0.5111
dev50 0.7055 0.5510 0.6416 0.5251
v80 0.6996 0.5188 0.6301 0.7026
avgDirection 0.6763 0.5515  0.5900 0.5872
direction 0.6734 0.5470 0.6734 0.5758
startY 0.6581 0.7472  0.6581 0.6581
speed 0.6531 0.5000  0.6100 0.6329
startX 0.6531 0.5310 0.6531 0.5730
as0 0.6447 0.7789  0.6953 0.6501
displacement 0.6416 0.5154  0.6416 0.6387
v50 0.6329 0.5407 0.6243 0.6387
endX 0.6243 0.5262 0.6243 0.5251
endY 0.6178 0.7279  0.6178 0.6232
v20 0.6014 0.5479 0.5843 0.6014
length 0.5617 0.5271  0.5560 0.5588
v_last3_median 0.5419 0.6637  0.6313  0.5560
svm_accuracy 0.9817 0.8750  0.9633 0.9633
xgb_accuracy 1.0000 0.9773  0.9450 0.9817

5.2.1 Feature Complexity vs. Detectability. We randomly choose
features as inputs for SVM and XGBoost to explore how the feature
number affects detection accuracy. As shown in Figure 5, detec-
tion accuracy scales logarithmically with feature count, plateauing
after an initial steep rise. While RAW swipes reach near 100% de-
tectability with only 5-10 features, the rotation_and_match strategy
maintains a persistent detectability gap. Specifically, in SVM analy-
sis, humanized accuracy remains between 0.85 and 0.95 even at 24
features. in XGBoost, despite faster convergence, humanized trajec-
tories consistently underperform the RAW baseline. This confirms
that our empirical humanization effectively masks mechanical pat-
terns, forcing both linear and non-linear classifiers toward lower
performance bounds across diverse contexts.

5.2.2 The Easiest Features. Path shape metrics are the easiest
to humanize. As shown in Table 2, content-agnostic metrics like
maxDev and ratio_end_to_len drop from near-perfect detectabil-
ity (~0.99) to near-random levels (0.55-0.64) after humanization.
By applying mathematical transformations like Rotation & Match
or B-splines, we can synthesize human-like motor imperfections
without affecting task outcomes, making movement curvature the
low-hanging fruit of humanization.
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Figure 4: Impact of humanization on detection accuracy across feature clusters. The chart compares the detection accuracy of
raw agent traces (light green) versus the minimum detectability achieved after applying humanization methods (dark green).
The consistent drop in accuracy across most clusters demonstrates the effectiveness of the proposed methods in evading
detection.
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Figure 5: Impact of Feature Selection on Detection Accuracy. Comparison of (a) SVM and (b) XGBoost performance as the
number of features increases.

5.2.3 The Hardest Features. Precision and temporal rhythm 6 Related Works
remain resistant due to their direct conflict with Task Utility.

In this section, we provide related works. Due to space constraints, a
The first one is Endpoint Precision. While paths can be curved,

comprehensive review of related works is provided in Appendix D.

scattering landing points is risky. In Table 2, endY detectability LMM-based GUI Agents Mobile automation has evolved from
actually doesn’t decrease. Unlike humans who exhibit natural vari- rigid scripts to autonomous agents powered by Large Multimodal
ance, agents target Ul node centers. Intentionally adding coordinate Models (LMMs) [30, 36, 42]. Recent frameworks, such as AppA-
noise without a granular understanding of clickable boundaries gent [60], Mobile-Agent [47, 58], CogAgent [23], and others [27, 33,

risks missing targets, forcing a trade-off between imitability and 34], utilize visual perception to interact with interfaces, extending

accuracy. capabilities to web navigation [12, 57] and OS-level control [7, 52].
Another one is Action Interval. Agents suffer from LMM in- However, these works prioritize Task Success Rate (Utility) via
ference latency. While injecting fake actions aligns the temporal optimization techniques [21, 32, 55]. Consequently, their motion
distribution with humans (see Fig. 11 in Appendix G), it severely control remains largely deterministic, creating a distinct behav-
compromises utility. As seen in the Trip Planning task (Table 1), ioral gap compared to human users and leaving them vulnerable to
the accuracy plummets from 0.75 to 0.15. Blindly injected actions detection.
often trigger unintended state changes. Since the agent is unaware Adversarial Dynamics in Digital Ecosystems The conflict
of these transitions, the original plan fails. between agent efficiency and platform attention economies [2, 29]
Hard-coded injections lack Ul awareness, while agent-generated has sparked adversarial dynamics. Existing research predominantly
ones incur further latency. A promising future direction is to employ focuses on Robustness versus Perturbation [51, 53, 54, 61]. Re-

a lightweight Guard Agent with sufficient visual understanding to cent studies demonstrate attacks on visual grounding [9, 13, 22],
identify safe zones for fake actions without the latency penalty of

the main LMM.



ranging from environmental injections [4, 6, 28, 63] and visual ad-
versaries [11, 14, 62] to backdoors [48, 50, 56]. Unlike these works
which address functional availability, we focus on survivability
against behavioral detection, framing the interaction as a “Tur-
ing Test on Screen.”

Bot Detection and Behavioral Biometrics Traditional bot
detection [26, 35, 44] primarily identifies rigid scripts via deter-
ministic patterns and fingerprints. In the mobile domain, detec-
tion leverages Behavioral Biometrics, utilizing touch dynamics
(e.g., pressure, velocity) for user verification [3, 15, 16, 25, 41, 59].
While recent works extend these principles to mouse or game dy-
namics [24, 37] and address robustness against replay or robotic
attacks [1, 18, 39, 59], a critical gap remains regarding LMM-based
agents. Unlike distinctively rigid bots or perfect replay attacks,
LMM agents possess stochastic reasoning capabilities yet exhibit-
ing mechanical execution, which current paradigms fail to address
systematically.

7 Discussion & Future Work

The “Turing Test on Screen” serves not merely as a technical bench-
mark, but as the prelude to a long-term evolutionary arms race
between digital platforms and autonomous agents. In this conclud-
ing section, we discuss the anticipated trajectories of this conflict
from both defensive and offensive perspectives.

7.1 The Future of Agent Humanization

To survive within this escalated detection landscape, agent human-
ization techniques must evolve beyond simple trajectory smoothing.
We identify three key directions for future research:

7.1.1  From Post-Processing to End-to-End Humanization. The Wrap-
per approach adopted in this study faces an inherent trade-off
between Offline Quality and Online Latency. Retrieving and
adapting high-fidelity human trajectories introduces computational
overhead. In real-time environments, this latency may cause the
agent to miss transient Ul events such as a closing popup window,
thereby negatively impacting the Task Success Rate.

We posit that humanization should be intrinsic to the model
architecture itself. Rather than relying on latency-inducing post-
processing, future Large Multimodal Models should be trained or
fine-tuned to generate humanized trajectories directly via an end-
to-end framework.

7.1.2  Personalized Humanization. Detection algorithms may even-
tually advance to Personalized Detection, verifying not merely
whether a user is human, but whether the behavior matches the
specific user’s historical profile. Consequently, agents must advance
towards Personalized Humanization, where the system learns
to mimic the unique motor patterns and behavioral habits of its
specific user rather than a generic population average.

7.1.3  Generalized Cross-Modal Humanization. Finally, human in-
teraction is fundamentally multimodal. While our current bench-
mark prioritizes Touch and Swipe events, future iterations of the
AHB should extend their scope to encompass additional modali-
ties. Specifically, this includes Typing Dynamics, which entails
simulating keystroke rhythms defined by realistic error rates and
inter-key latency variations. Furthermore, it is essential to model

zhu et al.

Scrolling and Reading Behaviors, where scroll velocity mod-
ulates in response to content density rather than maintaining an
artificial constant speed.

7.1.4  AHB as an Evolutionary Compass. Ultimately, the Agent Hu-
manization Benchmark (AHB) transcends its role as a mere evalu-
ation metric to become a cornerstone of a new survival-centric
design philosophy for GUI agents. By quantifying the trade-off
between Imitability and Utility, AHB serves as a fitness function
that drives a paradigm shift: from the singular pursuit of efficiency
to a dual-objective optimization of architectural resilience and be-
havioral camouflage.

In the evolving arms race between platforms and user agency,
AHB guides the development of indistinguishable digital citi-
zensnext-generation agents that possess both the functional power
to assist users and the behavioral nuance required to coexist har-
moniously in adversarial digital ecosystems.

7.2 The Future of Agent Detection

Current detection methodologies predominantly operate at the
Execution Layer, scrutinizing the kinematic fidelity of individual
actions. However, as humanization strategies approximate motor
perfection, the biometric surface between humans and agents will
blur. We posit that the adversarial frontier may shift to the Intent
Layer.

Consequently, the ultimate form of the Turing Test on Screen will
evolve from distinguishing whose hand is moving to determining
whose brain is thinking. Future detectors are expected to model
behavioral sequences over longer horizons, seeking signs of human
curiosity, distraction, and indecision that algorithmic efficiency
inherently strives to eliminate.

More discussion on 1. the robustness of detection baselines 2.
delineating the scope from motion dynamics to physical sensors 3.
the imitability-utility pareto frontier 4. broder impact and ethical
consideration are provided in Appendix E.

8 Conclusion

This paper introduces the “Turing Test on Screen,” a novel paradigm
evaluating the anti-detection capabilities of autonomous GUI agents
through behavioral humanization. By formalizing agent-platform
interactions as a MinMax optimization problem, we established
the Agent Humanization Benchmark (AHB) and a high-fidelity
dataset to quantify the trade-off between imitability and task utility.
Our findings demonstrate that while vanilla LMM-based agents are
highly detectable due to kinematic anomalies, our proposed hu-
manization strategies significantly enhance behavioral authenticity
both theoretically and empirically while maintaining performance.

As the adversarial landscape evolves, we anticipate a paradigm
shift in detection from execution-level kinematics to intent-level
patterns. The AHB serves as a compass for this transition, guid-
ing the development of agents that move beyond mere functional
efficiency toward seamless coexistence within human-centric dig-
ital infrastructures. Ultimately, this work lays the foundation for
autonomous agents to sustainably safeguard user agency in increas-
ingly adversarial online environments.
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A The Conflict Between GUI Agents and App
Platforms

A.1 Background

To understand the gravity of this incident, it is essential to contex-
tualize the hardware involved. The conflict centers on devices like
the Nubia M153 smartphone, which features a deep integration of
ByteDance’s Doubao Mobile Assistant.

Unlike traditional voice assistants (e.g., Siri or Google Assistant)
that largely rely on official APIs, Doubao functions as a system-
level agent. It utilizes the INJECT_EVENTS permission and Vision-
Language Models (VLM) to “see” the screen and simulate physical
taps. This allows it to execute cross-app workflows without manual
input, promising a “zero-touch” experience for commands such as:

“Open WeChat and send a message to my wife saying
I’ll be home in 20 minutes.”

For the end-user, this flattens the friction of navigating multiple
apps. For app developers, however, this unauthorized “driving” of
their interface represents a significant security gray area.

A.2 The Incident

In late 2025, the theoretical tension between GUI agents and app
platforms escalated into operational failures.?

A.2.1 The Automation Scenario. The Doubao agent allows users
to automate complex interaction chains via voice. For example,
instead of manually opening WeChat, finding a contact, and typing,
the user issues a voice command. The Al then visibly takes over the
screen, opening windows and simulating clicks to execute the task.

While ByteDance explicitly states that the assistant does not
perform sensitive operations like payments or identity ver-
ification, the agent still requires deep access to the app’s GUI to
function for standard tasks like messaging or searching.

A.2.2  The Security Backlash. Upon release, users of the Nubia
M153 immediately encountered service denials, including forced
logouts from WeChat and security warnings from banking applica-
tions like the Agricultural Bank of China. The conflict was driven
by the assistant’s reliance on the INJECT_EVENTS permission, a
high-privilege capability that allows software to programmatically
generate touch inputs and keystrokes. Consequently, the apps’ au-
tomated risk control measures interpreted the AI's external control
as unauthorized manipulation, triggering defensive protocols de-
signed to prevent account hijacking and fraud.

A.3 Technical Mechanism of Conflict

The conflict stems from a fundamental incompatibility between
agentic automation and platform protocols. Since app plat-
forms like WeChat do not provide open APIs for third-party con-
trol, agents must resort to screen-driven techniques, treating the
application simply as a graphical user interface to be navigated vi-
sually. However, this approach directly clashes with the platforms’

Shttps://opentools.ai/news/wechat-and-chinese-banking-apps-check-bytedances-
doubao-mobile-assistant-amid-privacy-and-security-concerns
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Figure 6: Doubao Mobile Assistant Working Scene on the Offical Website.

defensive architectures, which employ sophisticated anti-bot algo-
rithms to prevent bulk-spamming and fraud. From the platform’s
perspective, the agent’s interaction patterns were indistinguish-
able from malicious scripts; consequently, the system prioritized
security, defaulting to blocking any non-human input to prevent
potential data breaches.

A.4 Arguments and Implications
The standoff highlights the divergent incentives of the two parties:

(1) The OS/Agent Provider (ByteDance/Nubia): They argue for
User Agency and Innovation. They contend that since the user
explicitly authorized the assistant, the Al acts as a legitimate
digital proxy for human intent. ByteDance further emphasized
that their tool adheres to privacy standards and deliberately
avoids sensitive operations like financial transactions.

(2) The Super-Platform (Tencent/Banks): They cite Security
and Ecosystem Integrity. Reports indicate that WeChat’s re-
strictions were not specifically targeted at Doubao but were
unintentional triggers of existing risk control measures. They
implies that allowing external programs to drive the apps by-
passes critical security checks, creating a vulnerability that
could be exploited by malicious actors if such automation be-
comes normalized.

A.5 Outcome

The Doubao Incident serves as a critical case study for the GUI
Agent industry. It demonstrates that permissionless Ul-based au-
tomation remains a fragile operational mode. Without formal API

agreements or standardized security protocols, Al agents attempt-
ing to navigate walled gardens will inevitably collide with the
defensive countermeasures of established software ecosystems.

B Feature Extraction and Statistical Analysis

In this section, we delineate the methodology for extracting discrim-
inative behavioral features from the raw event streams & defined in
Section 2. Following our adversarial framework, the fundamental
unit of behavioral analysis is the action a;. Each action, whether
performed by a human or a GUI agent, triggers a corresponding
event set E;.

Mathematically, each action is characterized by its triggered sig-
nature: E; = (M,,S;), where M; and S; denote the synchronized
MotionEvents and SensorEvents, respectively. The MotionEvent com-
ponent M, consists of a series of FingerEvents {f,}~_,, where each
fn = (xn, Yn, tn) encodes the spatial coordinates and timestamp at
sample n. Concurrently, the SensorEvent component S; captures
high-dimensional multimodal data generated during the execution
of a;:

S = {Acc, Gyro, RotVec, Grav, LinAcce, Mag, Light, Prox}  (7)

where these elements correspond to the Accelerometer, Gyroscope,
and other hardware sensors. Intervals between consecutive actions
represent periods of inactivity during state transitions s; — $;41.

B.1 Dataset Collection

Based on the definition of a;, we construct a large-scale, multi-
modal dataset to evaluate the discriminative power of the Detector
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Table 3: Task Clusters and Applications

Cluster ID Category Applications

0 Social Media Toutiao, Weibo, Xiaohongshu, Zhihu

1 Shopping JD, Taobao, Cainiao, Meituan, Eleme

2 Video Streaming  iQIYI, Bilibili, QQ Music

3 Trip Planning Ctrip, Amap (Gaode), Umetrip, Qunar

4 Office & Learning Tencent Docs, Tencent Meeting, Youdao Dictionary, Haodafu

Deg. Table 4 and Table 5 provides a detailed breakdown of the dataset,
which spans two primary operator distributions:

e Human Operators (7): Data collected from four distinct sub-
populations (Young Man, Young Woman, Middle-aged, and El-
derly) to account for physiological variances in human actions.

e GUI Agents (Gg): Action sequences recorded from state-of-the-
art models including UI-TARS, MobileAgent-E (GPT-40/Claude-
3.5-Sonnet), AgentCPM and AutoGLM.

All experiments are conducted on the same device—a Xiaomi
Mi Max 2 running MIUI 11.0.2.0—to ensure consistency and compa-
rability. Data are collected online, verbatim from the phone, while
humanization methods are applied in real time during agent actions
rather than post hoc, ensuring accurate assessment of their effects.

For humanized agents without fake actions, tap durations are
elongated, and swipes are rendered realistic via data-driven trajec-
tory matching. As shown in Table 1, some agents undergo only
swipe humanization, leaving tap durations unmodified. For agents
with fake actions, the applicable humanization techniques (tap
elongation and/or swipe humanization) are augmented with small
circular gestures (radius: 50 px) emitted from the last tap location
according to a Poisson process with rate A = 0.9 Hz.

Sensor data recorded alongside interactions include: Accelerom-
eter (proper acceleration, m/s?), Gyroscope (angular velocity,
rad/s), Magnetic Field (geomagnetic field, yT), Gravity (estimated
gravitational acceleration, derived from accelerometer), Linear Ac-
celeration (acceleration excluding gravity, obtained by subtracting
Gravity from Accelerometer), Rotation Vector (fused orientation
from Accelerometer, Gyroscope, and Magnetic Field), Light (ambi-
ent illuminance in lux), and Proximity (nearby object detection).
The latter two are hardware sensors; the rest include both physical
and virtual (software-fused) types. Visualization of sensor changes
across time axis is shown in Figure 7.

For more details, see the official documentation: Android Sensor
Overview and Android Sensor Types.

However, it is worth noting that while our dataset encompasses
both event types, achieving high-fidelity humanization of Sen-
sorEvents poses significant technical challenges. In realistic deploy-
ment scenarios, such as when a mobile device is placed stationary
on a flat surface, the intricate fluctuations of sensors like the Gyro-
scope and Magnetic Field are inherently difficult for GUI agents to
simulate authentically. The only viable path for an agent to simulate
such signals would require system-level API interventions to in-
ject synthetic sensor values. Consequently, this study intentionally
constrains its primary focus to the humanization of MotionEvents,
treating the investigation of sensor-level adversarial simulation as
a secondary objective to be addressed in future work.
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Figure 7: Sensor Events Visulization as Time Changes.

B.2 The Definition of Tap and Swipe Actions

We categorize each action a; as either a tap or a swipe based on
the number of its FingerEvents within M,. Specifically, an action
is defined as a tap if |f| < 5 and a swipe if |f| > 5. We visualize
every action from the perspective of length and duration. As is
shown in Figure 8, the duration of an action is nearly proportional
to its length, since—given the smartphone’s constant MotionEvent
sampling rate and the fact that finger movement during swipes
continuously generates new events—the effective MotionEvent gen-
eration rate remains roughly constant. Moreover, we can see many
actions with length < 5 clustered in the bottom-left corner of the
figure; these are classified as taps, consistent with the observation
that taps involve little to no finger movement between down and
up events.

B.3 24 statistical features

From these raw sequences, we derive 24 statistical features de-
tailed in Table 6, selected to capture specific biomechanical and
behavioral characteristics. The rationale for including the absolute
spatial coordinates of the trajectory’s start and end points stems
from the observation that users exhibit unique spatial preferences,
frequently interacting with specific areas on the screen regardless
of the underlying interface layout.

We utilize kinematic features to capture dynamic motion control
habits. Specifically, by calculating the average velocity of the
last five points of the trajectory, we can distinguish between
two different rolling behaviors: static release, where the user stops
moving before lifting their finger and ballistic release, where the
user maintains a certain lateral velocity when lifting their finger,
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Table 4: Dataset composition of humans and raw agents across motion and sensor events.

Category ‘ Motion Event ‘ Sensor Event ‘ o
verall
Type Sub-population ‘ Tap Swipe ‘ Accel. Gyro. RotVec. Grav. LinAcc. Mag. Light Prox.
Young Man 5050 2186 4516935 4516491 4482116 4516352 4516349 1101702 5300 566
Human Young Woman 1706 786 1300213 1300038 1279412 1300018 1300012 314457 2544 182 37.768.698
Middle-aged 782 208 743043 742953 742922 742953 742952 182605 1314 86
Elderly 644 161 651490 651402 641091 651399 651396 157573 1225 84
UI-TARS 772 380 2,991,281 2,991,215 2,971,001 2,991,077 2,991,074 730,144 579 212
Mobile-Agent-E (GPT-40) 832 148 15,392,992 15,392,962 15,392,742 15,392,802 15,392,802 3,782,534 2,999 222
Agent | Mobile-Agent-E (Claude-Sonnet) | 849 141 |16,165,856 16,165,847 15,655,597 16,165,637 16,165,636 3,846,893 1,185 212 |243,090,929
AgentCPM 2,400 166 3,343,441 3,343,425 3,343,258 3,343,303 3,343,305 821,607 472 175
AutoGLM 1,597 339 8,577,328 8,577,289 8,550,015 8,577,154 8,577,152 2,101,041 619 220

Table 5: Dataset composition of humanized agents with or without fake actions across motion and sensor events.

Category ‘ Motion Event ‘ Sensor Event ‘ o
verall
Type ‘ Sub-population ‘ Tap Swipe ‘ Accel. Gyro.  RotVec.  Grav.  LinAcc. Mag. Light Prox.
UL-TARS 1677 683 | 6357826 6357750 6318637 6357479 6357484 1552891 761 388
Hug‘elgtzed Mobile-Agent-E (GPT-40)  |1382 269 |22018165 22018033 21964700 22017779 22017784 5397465 1354 401
(w/o fake Mobile-Agent-E (Claude-Sonnet) | 675 46 12942360 12942301 12141290 12942167 12942158 2983499 2394 215 | 280,320,486
action) AgentCPM 1954 286 3583409 3583366 3583216 3583246 3583252 880616 420 174
AutoGLM 1797 348 | 8752376 8752336 8724506 8752198 8752196 2143920 632 225
Hu;{‘gtgtzed UI-TARS 735 6001 3213798 3213773 3200123 3213647 3213644 786520 2833 185
(with fake Mobile-Agent-E (GPT-40) 601 33187 |14346123 14346063 14345898 14345959 14345962 3525565 425 178 | 154,704,094
action) AutoGLM 2201 21521 [11921876 11921824 11921638 11921682 11921681 2929341 888 222
1e6 Human gesture length vs duration how directed the action is. Specifically, all N consecutive coordi-
Lo nate pairs (xp, Yn), (Xn+1, Yn+1) along the path define an ensemble
of N — 1 unit direction vectors z,, = exp(i¢,) with angles ¢,. The
08 mean resultant length R of this ensemble is formally characterized
by:
8 0.6 N-1
5 R=(N-17}" z ®)
s =
S 0.4
This metric scales between 1 and 0, indicating a perfectly straight
0.2 line and uniformly random angles, respectively, and provide a ro-
bust measure of angular dispersion. Associated with this ensemble
is the mean direction, defined as arg((N — 1)~! 21’212—11 Zn)-
0.0 10 2 30 20 S0 In addition, we calculated the path efficiency ratio, defined

length (number of FingerEvents)

Figure 8: The Lengths and Durations of Each Action. Actions
with |f| < 5 are considered taps.

resulting in inertial rolling. This distinction is typically associated
with a unique throwing velocity inherent to a particular user.

To comprehensively quantify the geometric linearity and curva-
ture of the action, we utilize the mean resultant length to measure

as the Euclidean distance between the endpoints divided by the
total trajectory length, and the maximum signed perpendicular
deviation of the trajectory relative to the ideal line connecting the
endpoints. The signed deviation is particularly useful for identifying
the convexity of action arcs, which can serve as a potential indicator
of the user’s dominant hand.

Temporal dynamics provide further behavioral resolution. Fea-
tures such as action duration and inter-action latency act as
proxies for cognitive processing and reading speed, distinguishing
between users and agents who employ slow, continuous scrolling
and those who execute rapid, discrete page shifts.
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Table 6: Touch Dynamics Feature Descriptions with Information Gain (IG)

Variable Name

Full Description

Information Gain

Explanation

Velocity (Kinematics)

v20 20%-perc. pairwise velocity 0.4487 Speed at lower 20th percentile (slow phase).
v50 50%-perc. pairwise velocity 0.4491 Median velocity (typical speed).

v80 80%-perc. pairwise velocity 0.4750 Speed at 80th percentile (peak speed).
speed average velocity 0.4238 Total distance divided by total duration.
v_last3_median median velocity at last 3 pts 0.4796 Deceleration behavior near target.
Acceleration (Kinematics)

a20 20%-perc. pairwise acc 0.4555 Acceleration at lower 20th percentile.
a50 50%-perc. pairwise acc 0.3583 Median acceleration (smoothness).

a80 80%-perc. pairwise acc 0.3616 Acceleration at 80th percentile (jerks).
acc_first5pct_median  median acc. at first 5 pts 0.4197 Initial impulse force at touch-down.
Deviation & Linearity

dev20 20%-perc. dev. from line 0.5406 Lower bound deviation from straight line.
dev50 50%-perc. dev. from line 0.5911 Median deviation (general straightness).
dev80 80%-perc. dev. from line 0.5084 Major deviation (curves).

maxDev largest dev. from line 0.6726 Furthest point from ideal line (max arc).
Geometry & Spatial

length length of trajectory 0.4956 Actual path length traveled.
displacement direct end-to-end distance 0.5178 Linear distance between start and end.
ratio_end_to_length ratio end-to-end dist / length 0.6581 Path efficiency (1 = perfect straight line).
meanResultantLength  mean resultant length 0.6581 Directional consistency statistic.
direction direction of end-to-end line 0.6052 Global angle of the action.

avgDirection average direction 0.6107 Average of local angles between points.

Coordinates & Time
startX / startY
endX / endY

duration

start x / start y
stop x / stop y

action duration

0.5167 / 0.4036
0.5160 / 0.3975
0.5831

Touch-down coordinates.
Lift-off coordinates.

Total time in milliseconds.

B.4 Information Gain

To assess the utility of the extracted feature set in distinguishing
between authentic human inputs and agent operations, we ana-
lyze the information gain provided by each individual attribute.
Consistent with findings in behavioral biometrics, not all features
contribute equally; therefore, we quantify a measure of informa-
tiveness (Ir) for each feature F to reveal the hierarchy of feature
relevance.

We define this measure as the relative mutual information be-
tween the feature variable F and the source identity variable U
(representing the class: Human or Agent). Formally, Ir is calculated
as the ratio of the mutual information I(F; U) to the entropy of the
source identity H(U):

_I(FU) _H(U)-H(U|F) _  H(UIF)
FTTHUY H(U) T TH@U)

©

Here, H(U) and H(U|F) denote the marginal entropy of the source
identity and the conditional entropy of the source identity given fea-
ture F, respectively. This normalized metric yields a value between
0 and 1, where 0 indicates that the feature carries no discriminatory

information, and 1 implies that the feature strictly determines the
source identity.

Based on the quantitative analysis in Table 6, geometric features
(e.g., maxDev, IG =~ 0.66) demonstrate the highest discriminative
power, effectively capturing the contrast between natural human
motor noise and agent linearity. In contrast, acceleration statistics
and absolute coordinates exhibit low informativeness (IG < 0.40)
due to their susceptibility to sensor noise and UI layout dependency.

Theoretically, features with higher mutual information are more
beneficial for distinguishing humans from agents. However, robust
detection is not achieved by individual metrics alone; rather, one
can gain more information by combining features that complement
each other to capture the full behavioral patterns.

To visualize potential redundancy within the feature space, Fig-
ure 9 presents a heatmap of pairwise correlation coefficients. The
color intensity reflects the magnitude of the correlation: darker
red denotes strong positive relationships, darker blue indicates
strong negative associations, and white signifies statistical indepen-
dence. While this matrix reveals distinct clusters of highly corre-
lated attributes, we do not exclude features based solely on these
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Feature Correlation Matrix between features with Humans vs Non-Humanized Agents
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Figure 9: The correlation of these 24 features. Red color means stronger correlation.

metrics. It is well-established that correlated variables can still
contribute unique, complementary information when combined in
high-dimensional classification models. Consequently, we retain
the complete feature set for our SVM and XGBoost detectors. The
primary utility of this visualization is to empirically verify specific
behavioral hypotheses, such as the consistent positive synchroniza-
tion observed across the 20%, 50%, and 80% velocity percentiles.

C Theoretical Results

In this section, we provide a bunch of theoretical theorem to prove
the effectiveness of heuristic Noise Injection and data-driven history
matching

Let (X, ¥) be the measurable space of behavioral trajectories.
Let P € P(X) denote the true distribution of Human behaviors, and
Gy € P(X) denote the distribution of the Raw Agent parameterized
by ®. The Humanization Wrapper is modeled as a Markov transition
kernel K, yielding the humanized agent distribution Gy, = GoK.

We posit two fundamental assumptions. First, we assume the
human distribution P is absolutely continuous, whereas the Raw
Agent distribution Gy lies on a lower-dimensional manifold, imply-
ing they are mutually singular (P L Gg). Second, we restrict the
detector Dg to the class Dy, of L-Lipschitz continuous functions.
This is a standard assumption for neural networks with bounded
weights.

The detector aims to maximize the standard cross-entropy ob-
jective:

Lp(De: P, Gy) = Ex-p[log De(x)] +Ex.g; [log(1-De(x))]. (10)
The following theorem restates the classical result regarding the

detector’s optimal performance.

THEOREM 1. For any fixed agent policy G}, the maximum discrim-
ination capability of the detector is bounded by the Jensen—Shannon
divergence:

sup Lp(De; P,Gp) = —log4 +2-JS(P || G}). (11)
De



Proor. Following the derivation in [19], consider the integrand
f(y) = p(x)logy + q(x) log(1 — y) for a fixed x. Setting > af =

Substltutlng

yields the optimal discriminator D*(x) = m.

D* back into Eq. (10):

p(x) q(x)

sup £ = [ p(x)log ROETE: e+ [ 1 log ™
/p(x) og ————— ) dx+/q(x)logﬂdx—2log2

P(x)+q(X) p(x)+g(x)

=KL(P || M)+KL(G Il M) —log4 =—log4+2-JS(P || Gy),

where M = (P + G})/2. O

We now analyze our first strategy, which injects variance via
randomized smoothing.

THEOREM 2. Let K,; be a strictly positive smoothing kernel and
Gy = Go* K. Then the smoothed agent strictly reduces the maximum
theoretical detectability:

JS(P || Gg) <JS(P || Go) =log2. (12)

Proor. For the Raw Agent, P L Gg implies disjoint supports.
Thus, the JS divergence is maximized:

1 2 1 2
JS(P || G<I>)=_/ plog—p+—/ glog—gzlogz.
2 Jsupp(p) P 2 Jsupp(Gy) 9

For the smoothed agent, Gy, admits a strictly positive density g’ (x)

<1

everywhere. On the support of P, we strictly have %

By the strict convexity of the divergence:

A
P16 = 720 o P00+ 40

]

p(x) +¢'(x)

Our second strategy, History Matching, aligns retrieved human
trajectories with the task. We prove that this approach is asymptot-
ically superior to the Raw Agent.

THEOREM 3. Let ¥ : X — S be a feature mapping to a compact
metric space S. Let Py be the human distribution and Ggy = 8o be
the Raw Agent. Let Py be the empirical measure of History Matching.
As N — oo:

lim sup LD(D;P\I;,PN) =—-log4 < sup Lp(D;Py,Gow).
NHMDEDL DeDy,
(13)

Proor. Let V(Q) = supp Lp(D; Py, Q). For the History Match-
ing agent, using the inequality | sup f — supg| < sup |f —g|:

[V(Py) — (~log4)| = [V (Py) = V(Py)]|

< sup Exmp [log(1 - D(x))] -
DeD
Since h(x) = log(1 — D(x)) is Lipschitz bounded by constant K,
Kantorovich-Rubinstein duality implies the bound K - W; (PN, Py),
which converges to 0 almost surely.
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As for the Raw Agent Gy = o, consider the perturbation
D¢(x) = o(2¢ - min(]|x]|, 1)) around the trivial detector Dy = 0.5.
Using the Taylor expansion log(0.5 + u) ~ —log 2 + 2u:

L(De) = Epy [-1og 2 + 2(De(x) — 0.5)] + [-log2 — 2(Dc(0) — 0.5)]
=—log4 + 2Ex-p, [De(x) — 0.5]
~ —log 4 + €Byx-p, [min(||x]], 1)].

Since Py # Jy, the expectation is strictly positive. Thus, sup £ >
—log4. o

D Related Work
D.1 LMM-based GUI Agents

The evolution of mobile automation has transitioned from rigid,
rule-based scripts to autonomous agents empowered by Large Mul-
timodal Models (LMMs). Early automation frameworks, such as
Selenium and Appium, relied heavily on static XML view hierar-
chies and predefined coordinate scripts, making them brittle to UI
updates and lacking semantic understanding.

The emergence of LMMs [30, 36, 42] has catalyzed a paradigm
shift. Recent works like AppAgent [60], Mobile-Agent [47, 58],
CogAgent [23], and others [27, 33, 34] utilize the strong visual
perception and reasoning capabilities of models to interact with
mobile interfaces in a manner akin to human users. These agents
can interpret screenshots, reason about task goals, and execute
actions through a general-purpose action space (e.g., tap, swipe).
Subsequent research has further expanded these capabilities to web
navigation [12, 57] and adaptive OS-level control [7, 52].

However, the primary objective of these existing works is to

2p(x) ]_,. lEG [10g M] < log omaximize Task Success Rate (Utility) and efficiency. This goal

has driven the adoption of advanced optimization techniques, such
as reinforcement learning and policy optimization [21, 32, 55], to
refine agent decision-making. Consequently, the motion control
modules of these agents are often implemented using determinis-
tic algorithms. While effective for task completion, these efficient
but unnatural kinematic patterns create a distinct behavioral gap
compared to human users, leaving them vulnerable to detection.

D.2 Adversarial Dynamics in Digital Ecosystems

The widespread deployment of autonomous agents has precipitated
a structural conflict within the digital economy. As noted by recent
studies [2, 29], dominant digital platforms rely heavily on the atten-
tion economy, whereas agents are optimized for efficiency, often
bypassing ads and promotional content.

This misalignment of incentives has triggered an adversarial
dynamic. Existing research in this domain predominantly focuses
on the axis of Robustness versus Perturbation [51, 53, 54, 61].
For instance, recent works [9, 13, 22, 29] have demonstrated how

latforms can launch adversarial attacks to disrupt an agent’s visual

Expy [log(1 = D(:gpd mding. These threats range from environmental injections [4, 6,

28, 63] and visual adversaries [11, 14, 62] to more insidious backdoor
and jailbreak triggers [48, 50, 56]. In response, strategies have been
proposed to fine-tune agents to resist such visual and structural
perturbations.
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However, this perspective addresses only the availability of
agents, overlooking the prerequisite of invisibility. Before deploy-
ing complex adversarial perturbations, platforms are incentivized
to first deploy passive detection mechanisms, utilizing techniques
such as behavioral biometrics and fingerprinting, to filter out non-
human actors to avoid degrading the experience for real users. Our
work shifts the focus from robustness against functional attacks to
survivability against behavioral detection, framing the interac-
tion as a “Turing Test on Screen.”

D.3 Bot Detection and Behavioral Biometrics

The detection of automated agents has long been a critical compo-
nent of digital security. Traditional bot detection literature [26, 35,
44] focuses primarily on identifying rigid scripts associated with
web crawlers. These methods often rely on analyzing deterministic
patterns, such as fixed inter-arrival times, repetition of identical
coordinate sequences, or inconsistencies in browser fingerprints.

In the mobile domain, detection often leverages Behavioral
Biometrics, which treats touch dynamics as a unique signature for
user identity. Research in this field [3, 3, 15, 16, 25, 41, 59] utilizes
features such as touch pressure, contact area, finger velocity, and
trajectory curvature to distinguish between different human users.
While some works have extended these principles to mouse dynam-
ics [24] or game avatar trajectories [37], the primary focus remains
on user verification. Specifically, studies have explored the resilience
of these systems against simple replay attacks [18, 59] and even
robotic attacks on touchscreens [39], with recent advancements
proposing GAN-based frameworks to enhance robustness [1].

Despite this rich history, a critical gap exists in the era of LMM-
based agents. Current detection paradigms operate under the as-
sumption that bots are either dumb scripts with zero variance or
replay attacks with perfect repetition. LMM-based agents, however,
represent a new class of adversary: they possess stochastic decision-
making capabilities but often exhibit mechanical execution. There is
currently a lack of systematic research addressing the detectability
of these advanced agents, which sit in the uncanny valley between
rigid bots and natural humans.

E Further Discussion

E.1 The Robustness of Detection Baselines.

A potential concern regarding our benchmark is the choice of
feature-based classifiers (SVM and XGBoost) over deep sequence
models like LSTMs [20] or Transformers [45]. We argue that this
setup is both scientifically rigorous and practically representative.
Empirically, we observe a saturation of Detection effect: raw LMM
agents exhibit such high levels of mechanistic regularity (e.g., near-
zero variance in velocity and perfect linearity) that even shallow
statistical models achieve near-perfect accuracy (> 99%), rendering
more complex neural architectures redundant for current identifica-
tion tasks. Furthermore, the focus on interpretable features allows
us to pinpoint the specific behavioral patterns of agents, which is
more conducive to the iterative refinement of humanization strate-
gies. From a theoretical standpoint (see Theorem 3), our History
Matching approach aims to minimize the J-S divergence between
agent and human distributions. As this divergence approaches zero,
the performance of any classifier, regardless of its architecture, is

bounded by random guessing. Thus, AHB provides a foundational
metric that addresses the root of detectability across varying levels
of detector complexity.

E.2 Delineating the Scope From Motion
Dynamics to Physical Sensors

A natural extension of the Turing Test on Screen would involve
auxiliary sensor data, such as gyroscope and accelerometer read-
ings, which real-world anti-abuse systems often utilize to verify
physical device movement. In this study, we intentionally constrain
our primary focus to the humanization of MotionEvents . We justify
this prioritization based on two factors. First, touch dynamics con-
stitute the first line of defense. As demonstrated in our empirical
analysis, current agents fail so significantly at the interaction layer
that platforms can effectively flag them without invoking high-
power sensor monitoring. Second, high-fidelity sensor simulation
presents a distinct system-level challenge, often requiring kernel-
level signal injection or physical robotics, which falls outside the
scope of algorithmic agent policy design. Future work will explore
the cross-modal alignment between virtual touch interactions and
physical sensor signals, aiming to construct a holistic humanization
framework that synchronizes cinematic screen movements with
believable inertial noise.

E.3 The Imitability-Utility Pareto Frontier.

A critical observation in our benchmark is the significant utility
degradation associated with certain humanization strategies, most
notably the fake action injection in complex tasks like Trip Plan-
ning in Table 1. We argue that these results empirically expose a
fundamental Pareto Frontier between behavioral imitability and
task utility. The collapse of success rates (from 0.75 to 0.15) in the
Online + Fake configuration reveals that naive noise injection, while
effective at obfuscating statistical signatures, frequently violates
the underlying logic of the GUI, leading to unintended side effects
such as accidental navigation or session timeouts. In contrast, our
History Matching strategy maintains a much more favorable bal-
ance, achieving high imitability with significantly less utility loss.
By documenting these failures, AHB provides a crucial caution-
ary tale for the community: humanization must be context-aware
rather than purely stochastic. These findings justify the need for
more advanced Guard Agents (as discussed in Section 5.2.3) that
can generate human-like noise without logical interference, setting
a new research agenda for the next generation of GUI agents.

E.4 Broader Impact and Ethical Considerations.

The introduction of the AHB benchmark raises important ethical
questions regarding the potential for bypassing anti-bot measures.
However, we contend that the release of this research serves the
long-term interests of platform security through a Red Teaming
philosophy. Historically, malicious actors (e.g., click farms) have
operated with proprietary, non-transparent evasion techniques,
leaving defenders in a reactive stance. By formalizing the behav-
ioral gaps of LMM agents and providing standardized detection
baselines, our work empowers platform defenders to identify and
mitigate sophisticated bot behaviors more effectively. Furthermore,



our primary motivation is to safeguard User Agency. As illus-
trated by the case in Appendix A, current all-or-nothing defense
mechanisms often inadvertently penalize legitimate users employ-
ing Al assistants for accessibility or productivity. Our research
advocates for a shift toward more nuanced, behavioral-aware au-
thentication that can distinguish between constructive automation
and malicious exploitation. We will release our dataset and eval-
uation harness under a restrictive research license to ensure they
are used primarily for advancing the robustness of defense systems
and the development of ethical Al assistants.
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F System Prompt for Mobile GUI Agent

The following is the specific system prompt template used for the
MOBILE_USE_DOUBAO configuration in UI-TARS. This prompt
defines the action space, output constraints, and task-specific in-
structions for the agent.

F.1 UI-TARS

MOBILE_USE_DOUBAO = """You are a GUI agent. You are given a
task and your action history, with screenshots. You
need to perform the next action to complete the task.

## Output Format

Thought:

Action:

## Action Space

click(point="'<point>x1 y1</point>")

long_press(point="<point>x1 y1</point>")

type(content="") #If you want to submit your input, use "\\n
" at the end of “content.

scroll(point="'<point>x1 y1</point>', direction="'down or up
or right or left')

open_app(app_name=\"\")

drag(start_point='<point>x1 yl1</point>', end_point='<point>
X2 y2</point>")

press_home ()

press_back()

finished(content="xxx') # Use escape characters \\', \\",
and \\n in content part to ensure we can parse the
content in normal python string format.

## Note

- Use {language} in ~Thought™ part.

- Write a small plan and finally summarize your next action
(with its target element) in one sentence in ~Thought~
part.

## User Instruction

{instruction}

Search for flights from Beijing to Shenzhen on the 16th of a
specific month, filter by departure time between 12:00
and 18:00, specify economy class, select one flight,

and view detailed refund and change information.

F.2 Mobile-Agent-E

This section details the hierarchical prompt templates used in
Mobile-Agent-E. The templates are dynamically populated with
environmental metadata (e.g., coordinates, keyboard status) and
historical context.

F.3 Action Perception Prompt

The following template is used to generate the next operational
step based on the current screenshot and history.

‘### Background #it#
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This image is a phone screenshot. Its width is {width} pixels and
its height is {height} pixels. The user's instruction is: {
instruction}.

### Screenshot information ###

In order to help you better perceive the content... [Coordinates]; [
Content]

{clickable_infos}

Please note that this information is not necessarily accurate.

#i## Keyboard status ###
{The keyboard has (not) been activated...}

### History operations ###
Step-1: [Operation: {thought}; Action: {action}]

### Progress #i#
Completed contents: {completed_content}

### Response requirements ###
You must choose one of the six actions below:

1. Open app (app name)

2. Tap (x, y)

3. Swipe (x1, y1), (x2, y2)

4. Type (text) / Unable to Type
5. Home

6. Stop

### Output format ###
### Thought #i#H#

#i## Action #it#

### Operation #i##

Update the "Completed contents". Don't output the purpose, just
summarize what has been actually completed.

#i## Output format #it#

#i#t# Completed contents ###

F.6 Agent-CPM

The system prompt for Agent-CPM utilizes a schema-driven ap-
proach to ensure structured output and precise coordinate-based
grounding. The integrated JSON schema constrains the model to
output valid operational logic for Android GUI environments.

Listing 1: Synthesized System Prompt for Agent-CPM (CPM-
GUI)

F.4 Action Reflection Prompt

Used after an operation to verify if the result meets the expected
thought.

### Before the current operation #it#
Screenshot info & Keyboard status...

### After the current operation ###
Screenshot info & Keyboard status...

### Current operation #it#
Instruction: {instruction}
Operation thought: {summary}
Operation action: {action}

### Response requirements #i#

A: The result meets my expectation.

B: Results in a wrong page (need to return).
C: Produces no changes.

### Output format #it#
### Thought ###
### Answer #iH

F.5 Memory & Process Update Prompts

Templates for maintaining long-term knowledge and tracking task
completion progress.

% Memory Prompt Segment

### Response requirements ##

Is there any content closely related to #i## Important content ### on
the current page?

### Output format ###

### Important content ### {Content or None}

% Process Prompt Segment

### Progress thinking ###

Completed contents: {completed_content}
### Response requirements ###

# Role
You are an agent familiar with Android system touchscreen
GUI operations. You will analyze the GUI elements and
layout of the current interface based on user questions
and generate corresponding operations.

# Task
Based on the user's question and the input screenshot of the
current screen, output the next operation.

# Rule
- QOutput in compact JSON format.
- Output operations must follow the Schema constraints.

# Schema
{
"type": "object",
"description": "Execute action and determine current task
status",

"additionalProperties": false,
"properties": {

"thought": {
"type": "string",
"description": "The agent's thinking process"
}
"POINT": {
"$ref": "#/$defs/Location",
"description": "Click on a specified location on the
screen"
3
"to": {
"description": "Movement, composite gesture parameters
"oneOf": [
{

"enum": ["up", "down", "left", "right"],
"description": "From the current point (POINT),
perform a swipe gesture in directions: up, down, left,
right"
3,
{
"$ref": "#/$defs/Location",
"description": "Move to a certain location"

]
3

"duration": {
"type": "integer",




"description": "Execution time or wait time for the
action, in milliseconds",

"minimum": @,

"default": 200

o
"PRESS": {

"type": "string",

"description": "Trigger special keys: HOME (go to home

page), BACK (return button), ENTER (return key)",

"enum": ["HOME", "BACK", "ENTER"]

Bo
"TYPE": {
"type": "string",
"description": "Input text"
Bo
"STATUS": {

"type": "string",

"description": "Current status of the task. Special
cases: satisfied (no action needed), impossible (task
cannot be completed), interrupt (task interrupted),
need_feedback (user feedback required)",

"enum": ["continue", "finish", "satisfied", "
impossible", "interrupt", "need_feedback"],
"default": "continue"
}
1,
"$defs": {

"Location": {

"type": "array",

"description": "Coordinates relative to the top-left
corner of the screen, scaled to 0-1000 based on width/
height ratio. [x, yl",

"items": { "type": "integer", "minimum": @, "maximum":

1000 3},

"minItems": 2, "maxItems": 2

3
}
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3. Determine the next logical step. If the task is completed
, use the "stop" action.

4. All coordinates must be normalized to a range of @ to
1000.

# Action Space

- click(x, y): Tap the screen at normalized coordinates (x,
y).

- swipe(x1, y1, x2, y2): Swipe from (x1, y1) to (x2, y2).

- type(text): Type the specified text into the focused input
field.

- key(name): Press system keys like 'HOME', 'BACK', or 'MENU

- wait(): Wait for the screen to update or an app to load.
- stop(summary): Finalize the task and provide a summary of
what was achieved.

# Output Format
Thought: Your reasoning for the next step.
Action: The function call representing your action.

F.7 Open-AutoGLM System Prompt

The system prompt for Open-AutoGLM is designed to guide the
model through a loop of screen perception and action execution.
The prompt resides in phone_agent/config/prompts_en.py (or

prompts_zh.py for Chinese).

Listing 2: System Prompt for Open-AutoGLM

# Role
You are a professional mobile phone operation assistant. You
need to analyze the current screenshot and task
history to help users complete their requests on an
Android device.

# Task
Your goal is: {instruction}
Current Screen Resolution: {width} x {height}

# Guidelines

1. Observe the current screenshot carefully.

2. Consider the previous actions and the progress made so
far.
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Figure 12: Distribution analysis of trajectory deviation. We
compare the distribution of the maxDev feature for humans
versus non-humanized agents. While human data follows a
wide distribution reflecting natural motor variability, agent
data is concentrated in a singular impulse near zero, confirm-
ing the linearity of algorithmically generated paths without
humanization.
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Figure 10: Impact of Online Humanization on Task Utility.
This chart compares the success rates of raw agents (light
green) versus those employing various humanization strate-
gies (darker and darker green).
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Figure 11: Validation of interval mimicry using fake actions.
The figure compares the normalized action interval distri-
butions of the original human dataset (red) against four
GUI agents (UI-Tars, Mobile-Agent-E, AgentCPM-GUI, Open-
AutoGLM) augmented with offline fake actions and com-
bined agents augmented with online fake actions. The signif-
icant overlap indicates that the proposed method successfully
replicates the temporal distribution patterns of human be-
havior.
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Table 7: Merged Results: Cluster 0 vs Cluster 1 vs Cluster 2
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Cluster 0: Social Media

Cluster 1: Shopping

Cluster 2: VideoStreaming

Metric
RAW On.RM Off RM BS RAW On.RM Off RM BS RAW OnRM OffRM BS

maxDev 0.9969 0.5515 0.6186 0.7556 0.9899 0.6231  0.7710 0.5379 0.9929 0.6636 0.7146 0.5026
meanResultantLength 0.9878 0.6818  0.6286 0.6979 0.9982 0.8556  0.8183 0.9336 1.0000 0.8700  0.8476 0.9003
ratio_end_to_len 0.9878 0.6451 0.5798 0.5826 0.9980 0.8556  0.8537 0.9002 1.0000 0.8447  0.8338 0.8476
duration 0.8583 0.6907  0.5470 0.8507 0.9209 0.7554  0.8351 0.9230 0.9175 0.7517 0.7560 0.9147
a20 0.8355 0.8286  0.7190 0.7686 0.9632 0.9249  0.8780 0.9309 0.9679 0.9494 0.9306 0.9390
acc_first5pct 0.8244 0.5897  0.5532 0.8093 0.5155 0.7407 0.8301 0.5430 0.5652 0.7551 0.7782 0.5242
a80 0.8154 0.6575 0.6205 0.6560 0.5708 0.8516  0.8455 0.7229 0.5754 0.8577 0.8641 0.6784
dev80 0.7645 0.5310 0.6445 0.5476 0.6553 0.6863 0.7140 0.7685 0.6173 0.6668  0.7105 0.7239
dev20 0.7634 0.5038 0.5560 0.5111 0.8765 0.7317  0.7315 0.8176 0.8656 0.7076  0.7091 0.7907
dev50 0.7055 0.5510 0.6416 0.5251 0.7362 0.6777  0.7027 0.7994 0.7063 0.6879  0.7049 0.7696
v80 0.6996 0.5188  0.6301 0.7026 0.5980 0.7039  0.7898 0.6466 0.6229 0.7007  0.7404 0.6544
avgDirection 0.6763 0.5515  0.5900 0.5872 0.7140 0.7380  0.7702 0.7660 0.7355 0.7528  0.7560 0.7674
direction 0.6734 0.5470 0.6734 0.5758 0.7140 0.7157 0.7140 0.7635 0.7278 0.7336  0.7278 0.7595
startY 0.6581 0.7472  0.6581 0.6581 0.7965 0.8228  0.7965 0.7965 0.8656 0.8907  0.8656 0.8656
speed 0.6531 0.5000 0.6100 0.6329 0.8183 0.7317  0.7921 0.8210 0.7429 0.6922 0.7226 0.7380
startX 0.6531 0.5310 0.6531 0.5730 0.7844 0.7872  0.7844 0.8223 0.7976 0.8248 0.7976 0.8380
a50 0.6447 0.7789  0.6953 0.6501 0.9117 0.9224  0.8513 0.9002 0.9164 0.9321 0.9275 0.9108
displacement 0.6416 0.5154 0.6416 0.6387 0.8262 0.5907 0.8262 0.8249 0.6154 0.5648 0.6154 0.6301
v50 0.6329 0.5407 0.6243 0.6387 0.8156 0.7468  0.8045 0.8169 0.7278 0.7410  0.7465 0.7278
endX 0.6243 0.5262  0.6243 0.5251 0.7950 0.7989  0.7950 0.8269 0.8918 0.8700 0.8918 0.8808
endY 0.6178 0.7279  0.6178 0.6232 0.7567 0.8567  0.7567 0.7567 0.8515 0.9156 0.8515 0.8515
v20 0.6014 0.5479 0.5843 0.6014 0.8810 0.7678  0.7883 0.8775 0.8191 0.7696 0.7824 0.8110
length 0.5617 0.5271 0.5560 0.5588 0.8135 0.6550  0.7935 0.7898 0.5373 0.5221  0.5732 0.5602
v_last3_median 0.5419 0.6637 0.6313 0.5560 0.8713 0.8699  0.8009 0.8681 0.8287 0.8776 0.8627 0.8262
svm_accuracy 0.9817 0.8750  0.9633 0.9633 0.9887 0.9593  0.9323 0.9774 0.9850 0.9502 0.9300 0.9650
xgb_accuracy 1.0000 0.9773  0.9450 0.9817 1.0000 0.9889  0.9925 0.9925 1.0000 0.9950  0.9850 0.9850

Legend: On.RM: Online Rotation & Match; Off.RM: Offline Rotation & Match; BS: B-Spline.
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Table 8: Merged Results: Cluster 3 vs Cluster 4

Metric Cluster 3: Trip Planning Cluster 4: Office & Learning
RAW OnRM OffRM BS RAW OnRM OffRM BS

maxDev 0.9895  0.7188 0.6508  0.5629 1.0000  0.6347 0.5841  0.8178
meanResultantLength  0.9940  0.7806 0.7490  0.8479 1.0000 0.5181 0.5625  0.7720
ratio_end_to_len 0.9984  0.7573 0.7266  0.7830 1.0000 0.5294 0.5702  0.7366
duration 0.8601  0.7434 0.6696  0.8648 0.6159  0.5944 0.5052  0.6372
a20 0.9376  0.8153 0.8251 0.8855 0.8521 0.7204 0.7720  0.7543
acc_first5pct 0.6396  0.7445 0.7132  0.6082 0.7580  0.5662 0.6398  0.7283
a80 0.5940 0.7913 0.7801 0.5733 0.7824  0.5616 0.5935  0.6772
dev80 0.5086  0.5949 0.5748  0.6584 0.7526  0.5334 0.5314  0.5521
dev20 0.8552  0.6566 0.6365 0.7437 0.8247  0.5922 0.5419  0.6115
dev50 0.5909  0.5918 0.5895  0.7030 0.7921  0.5685 0.5236  0.5935
v80 0.5017  0.7071 0.6818  0.5151 0.5815 0.5616 0.5806  0.6186
avgDirection 0.5234  0.6332 0.6204  0.5880 0.6106  0.6050 0.5288  0.5921
direction 0.5151  0.5395 0.5151  0.5822 0.6372  0.6762 0.6372  0.6133
startY 0.5807  0.6749 0.5807  0.5851 0.5157 0.6262 0.5157  0.5157
speed 0.6204  0.7106 0.6806  0.6231 0.6475 0.5246 0.5651  0.6424
startX 0.6721  0.6388 0.6721  0.6842 0.5261  0.5226 0.5261  0.5261
a50 0.8471  0.8054 0.8421  0.8294 0.6986  0.6980 0.7366  0.6858
displacement 0.7211  0.7894 0.7211  0.7121 0.6532  0.7782 0.6532  0.5183
v50 0.6176  0.7211 0.6854  0.6404 0.5909 0.5090 0.5702  0.5599
endX 0.6830  0.6471 0.6830  0.6949 0.5183 0.5134 0.5183  0.5183
endY 0.5880  0.6888 0.5880  0.5938 0.5104 0.6050 0.5104  0.5052
v20 0.7521  0.7268 0.6770  0.7395 0.7265 0.5067 0.5728  0.7011
length 0.6571  0.7477 0.6647  0.6659 0.6799  0.6136 0.5683  0.5498
v_last3_median 0.7653  0.7257 0.7458  0.7320 0.6654 0.6132 0.6552  0.6577
svim_accuracy 0.9817  0.9479 0.8995 0.9726 0.9826  0.9265 0.9391  0.9739
xgb_accuracy 0.9954  0.9905 0.9863  0.9909 1.0000 0.9926 0.9739  0.9913

Legend: On.RM: Online Rotation & Match; Off.RM: Offline Rotation & Match; BS: B-Spline.
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